精英家教网 > 高中数学 > 题目详情
6.在平行四边形ABCD中,AB=4,AD=3,∠DAB=$\frac{π}{3}$,点E在BC上,且$\overrightarrow{BE}=2\overrightarrow{EC}$,F为CD边的中点,则$\overrightarrow{AE}$•$\overrightarrow{BF}$=(  )
A.$-\frac{8}{3}$.B.-1C.1D.2

分析 建立平面直角坐标系,求出$\overrightarrow{AE}$、$\overrightarrow{BF}$的坐标进行计算即可,

解答 以AB为x轴,以A为原点建立平面直角坐标系,如图,
则A(0,0),B(4,0),C($\frac{11}{2}$,$\frac{3\sqrt{3}}{2}$),D($\frac{3}{2}$,$\frac{3\sqrt{3}}{2}$),E(5,$\sqrt{3}$),F($\frac{7}{2}$,$\frac{3\sqrt{3}}{2}$).
$\overrightarrow{AE}=(5,\sqrt{3}$),$\overrightarrow{BF}=(-\frac{1}{2},\frac{3\sqrt{3}}{2})$,∴$\overrightarrow{AE}•\overrightarrow{BF}=5×(-\frac{1}{2})+\sqrt{3}×\frac{3\sqrt{3}}{2}=2$.
故选:D.

点评 题考查了平面向量的数量积运算,建立坐标系是一种常用办法,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f (x)=ax-lnx(a∈R).
(1)当a=1时,求f (x)的最小值;
(2)已知e为自然对数的底数,存在x∈[$\frac{1}{e}$,e],使得f (x)=1成立,求a的取值范围;
(3)若对任意的x∈[1,+∞),有f (x)≥f ($\frac{1}{x}$)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以(-3,4)为圆心,$\sqrt{3}$为半径的圆的标准方程为(  )
A.(x-3)2+(y+4)2=3B.(x-3)2+(y-4)2=3C.(x+3)2+(y-4)2=3D.$(x+3{)^2}+(y-4{)^2}=\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知F1,F2是双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左,右焦点,点P在双曲线上且不与顶点重合,过F2作∠F1PF2的角平分线的垂线,垂足为A.若$|{OA}|=\frac{b}{2}$,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.1+$\sqrt{2}$C.2$\sqrt{5}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$a={0.6^π},b={log_π}^{0.6},c={π^{0.6}}$,则a,b,c的大小关系是(  )
A.a<c<bB.a<b<cC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A={x|1≤x≤3},B={x|x>2},全集U=R.
(1)求A∩B和A∪(∁UB); 
(2)已知非空集合C={x|1<x<a},若C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(m,1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数m=(  )
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.正方体的边长为2,且它的8个顶点都在同一个球面 上,则这个球的表面积为(  )
A.12πB.-125πC.0D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算10lg3+log525=5.

查看答案和解析>>

同步练习册答案