精英家教网 > 高中数学 > 题目详情
已知抛物线y=ax2与直线y=kx+1交于两点,其中一点坐标为(1,4),则另一个点的坐标为
(-
1
4
1
4
(-
1
4
1
4
分析:利用抛物线y=ax2与直线y=kx+1交于两点,其中一点坐标为(1,4),求出抛物线与直线的方程,联立,可得另一个点的坐标.
解答:解:∵抛物线y=ax2与直线y=kx+1交于两点,其中一点坐标为(1,4),
∴a=4,k+1=4
∴a=4,k=3
∴抛物线为y=4x2,直线为y=3x+1
联立可得4x2-3x-1=0,∴x=1或x=-
1
4

∴y=4或y=
1
4

∴另一个点的坐标为(-
1
4
1
4

故答案为(-
1
4
1
4
).
点评:本题考查直线与抛物线的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y=ax2-1上存在关于直线x+y=0成轴对称的两点,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2(a∈R)的准线方程为y=-1,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2+bx+c与直线y=-bx交于A、B两点,其中a>b>c,a+b+c=0,设线段AB在x轴上的射影为A1B1,则|A1B1|的取值范围是(  )
A、(
3
,   2
3
)
B、(
3
,   +∞)
C、(0,   
3
)
D、(2,   2
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知抛物线y=ax2的准线方程为y=-2,则实数a的值为
1
8
1
8

查看答案和解析>>

同步练习册答案