精英家教网 > 高中数学 > 题目详情
斜三棱柱ABC—A1B1C1中,AA1=AC=BC=2,
,且平面ACC1A1⊥平面BCC1B1,则A1B的长度为         。m]
考查三棱柱的性质
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(13分)如图(2):PA⊥面ABCD,CD2AB,
∠DAB=90°,E为PC的中点.
(1)证明:BE//面PAD;
(2)若PA=AD,证明:BE⊥面PDC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,三棱锥中,
(Ⅰ)求证:平面
(Ⅱ)若为线段上的点,设,问为何值时能使
直线平面
(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图所示,已知三棱柱ABC-的底面边长均为2,侧棱的长为2且与底面ABC所成角为,且侧面垂直于底面ABC.
(1)求二面角的正切值的大小;
  (2)若其余条件不变,只改变侧棱的长度,当侧棱的长度为多长时,可使面 和底面垂直.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分,第Ⅰ小题4分,第Ⅱ小题5分,第Ⅲ小题3分)
如图,是直角梯形,∠=90°,=1,=2,又=1,∠=120°,,直线与直线所成的角为60°.
(Ⅰ)求证:平面⊥平面;
(Ⅱ)求二面角的大小;
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱台ABCD—A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.
(1)求证:B1B//平面D1AC;
(2)求二面角B1—AD1—C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,P—ABCD是正四棱锥,是正方体,其中 
(1)求证:
(2)求PA与平面所成角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面六面体中,既与共面也与共面的棱的条数为  (   )
A.3B.4 C.5D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将棱长为3的正四面体的各棱长三等分,经过分点将原正四面体各顶点附近均截去  一个棱长为1的小正四面体,则剩下的多面体的棱数E为    (    )
A.16B.17 C.18 D.19

查看答案和解析>>

同步练习册答案