精英家教网 > 高中数学 > 题目详情
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线且与椭圆相交于A,B两点,当P是AB的中点时,
求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
已知直线与椭圆相交于两点,为坐标原点,
(1)求证:
(2)如果直线向下平移1个单位得到直线,试求椭圆截直线所得线段的长度。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
已知椭圆与双曲线有共同的焦点F1、F2,设它们在第一象限的交点为P,且
(1)求椭圆的方程;
(2)已知N(0,-1),对于(1)中的椭圆,是否存在斜率为的直线,与椭圆交于不同的两点A、B,点Q满足?若存在,求出的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题14分) 设直线(其中为整数)与椭圆交于不同两点,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
如图,直角梯形ABCD,∠,AD∥BC,AB=2,AD=,BC=椭圆F以A、B为焦点且过点D,

(Ⅰ)建立适当的直角坐标系,求椭圆的方程;
Ⅱ)若点E满足,是否存在斜率两点,且,若存在,求K的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若方程表示焦点在轴上的椭圆,则的取值范围是  ▲   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦距为2,则的值为     .  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的离心率为,则="          " .

查看答案和解析>>

同步练习册答案