精英家教网 > 高中数学 > 题目详情

已知函数 
(Ⅰ)若a>0,函数y=f(x)在区间(a,a 2-3)上存在极值,求a的取值范围;
(Ⅱ)若a>2,求证:函数y=f(x)在(0,2)上恰有一个零点.

(Ⅰ) ;
(Ⅱ),函数y=f(x)在(0,2)上恰有一个零点。

解析试题分析:(Ⅰ)由已知
,解得
 不在(a,a 2-3)内
要使函数y=f(x)在区间(a,a 2-3)上存在极值,只需
解得      6分
(Ⅱ) 
在(0,2)上恒成立,即函数数y=f(x)在(0,2)内单调递减

函数y=f(x)在(0,2)上恰有一个零点      12分
考点:本题主要考查应用导数研究函数的单调性、极值及函数零点问题。
点评:典型题,本题属于导数应用中的基本问题,通过研究函数的单调性,明确了极值情况。涉及比较大小问题,通过构造函数,转化成了研究函数的单调性及最值。涉及函数的零点问题,研究了函数的单调性及在区间端点的函数值的符号。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数处取得极值.
(1)求的值;
(2)求的单调区间;
(3)若当时恒有成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为实数.
(Ⅰ) 若处取得的极值为,求的值;
(Ⅱ)若在区间上为减函数,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若存在极值,求的取值范围;
(2)若,问是否存在与曲线都相切的直线?若存在,判断有几条?并求出公切线方程,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数同时满足以下条件:
上是减函数,在上是增函数;
是偶函数;
处的切线与直线垂直.
(I)求函数的解析式;
(II)设,若存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若曲线在点处的切线方程为,求函数的解析式;
(2)讨论函数的单调区间;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当a=﹣2时,求函数f(x)的单调区间;
(Ⅱ)若g(x)= +1,+∞)上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数

(1)若处取极值,求的值;
(2)设直线将平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域(不包括边界),若图象恰好位于其中一个区域,试判断其所在区域并求出相应的的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 (R).
(1) 若,求函数的极值;
(2)是否存在实数使得函数在区间上有两个零点,若存在,求出的取值范围;若不存在,说明理由。

查看答案和解析>>

同步练习册答案