精英家教网 > 高中数学 > 题目详情
16.求函数y=cos2x+4sinx的最值及取到最大值和最小值时的x的集合.

分析 令sinx=t,t∈[-1,1],换元可得y=-(t-2)2+5,由二次函数区间的最值可得.

解答 解:令sinx=t,t∈[-1,1],
换元可得y=cos2x+4sinx
=1-t2+4t=-t2+4t+1=-(t-2)2+5,
由二次函数可知y在t∈[-1,1]单调递增,
∴函数的最大值为4,此时sinx=t=1,x的集合为{x|x=2kπ+$\frac{π}{2}$,k∈Z};
函数的最大值为-4,此时sinx=t=-1,x的集合为{x|x=2kπ-$\frac{π}{2}$,k∈Z}.

点评 本题考查三角函数的最值,换元并利用二次函数区间的最值是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知x2+y2=4,x>0,y>0,且loga(2+x)=m,loga$\frac{1}{2-x}$=n,则logay等于(  )
A.m+nB.m-nC.$\frac{1}{2}$(m+n)D.$\frac{1}{2}$(m-n)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,F为B1C1的中点,D,E分别是棱BC,CC1上的点,且AD⊥BC.
(1)求证;直线A1F∥平面ADE;
(2)E为C1C中点,能否在直线B1B上找一点N,使得A1N∥平面ADE?若存在,确定该点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知lgx=3,则x=1000.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若存在非零实数x,y,使不等式(6a-1)x2-2xy+ay2≥0成立,则实数a的取值范围是(  )
A.[0,+∞)B.(-∞-$\frac{1}{3}$)∪($\frac{1}{2}$,+∞)C.[-$\frac{1}{3}$,+∞)D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知log52=a,log53=b,用a、b表示log524;
(2)已知lg2=m,lg3=n,用m、n表示lg$\sqrt{4.5}$;
(3)已知lg25=x,用x表不lg2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.己知函数f(x)=-2a•4x+2x-1.
(1)a=1时,求f(x)在[-3,0]的值域;
(2)方程f(x)=0有负根,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.曲线y=x(x-1)(x-2)…(x-5)在x=0处的导数为(  )
A.120B.-120C.60D.-60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知对任意n∈N,有an>0且$\sum_{i=1}^{n}{{a}_{i}}^{3}$=($\sum_{i=1}^{n}{a}_{i}$)2,求证:an=n.

查看答案和解析>>

同步练习册答案