【题目】随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x=1”表示2015年,“x=2”表示2016年,依次类推;y表示人数):
x | 1 | 2 | 3 | 4 | 5 |
y(万人) | 20 | 50 | 100 | 150 | 180 |
(1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;
(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是,方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从到)若掷出偶数遥控车向前移动两格(从到),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为,试证明是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.
附:在线性回归方程中,.
【答案】(1),预计到2022年该公司的网购人数能超过300万人;
(2)约400元.
【解析】
(1)依题意,先求出,代入公式即可得到,,可得回归方程为,令,.所以预计到2022年该公司的网购人数能超过300万;
(2)遥控车移到第()格的情况是下列两种,而且也只有两种.
①遥控车先到第格,又掷出偶数,其概率为
②遥控车先到第格,又掷出奇数,其概率为
所以,即可证得是等比数列,
利用累加法求出数列的通项公式,即可求得失败和获胜的概率,从而计算出期望.
解:(1)
故 从而
所以所求线性回归方程为,
令,解得.
故预计到2022年该公司的网购人数能超过300万人
(2)遥控车开始在第0格为必然事件,,第一次掷骰子出现奇数,遥控车移到第一格,其概率为,即.遥控车移到第()格的情况是下列两种,而且也只有两种.
①遥控车先到第格,又掷出奇数,其概率为
②遥控车先到第格,又掷出偶数,其概率为
所以,
当时,数列是公比为的等比数列
以上各式相加,得
(),
获胜的概率
失败的概率
设参与游戏一次的顾客获得优惠券金额为元,或
X的期望
参与游戏一次的顾客获得优惠券金额的期望值为,约400元.
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=的图象在点(-2,f (-2))处的切线方程为16x+y+20=0.
(1)求实数a、b的值;
(2)求函数f(x)在区间[-1,2]上的最大值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为
A. 分B. 分C. 分D. 分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为,,过原点且斜率为1的直线交椭圆于两点,四边形的周长与面积分别为12与.
(1)求椭圆的标准方程;
(2)直线与圆相切,且与椭圆交于两点,求原点到的中垂线的最大距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列前项和为,且满足
(1)求数列的通项公式;
(2)求数列前项和;
(3)在数列中,是否存在连续的三项,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如表:
AQI指数值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | |
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
如图是某市12月1日-20日AQI指数变化趋势:
下列叙述正确的是( )
A.这20天中AQI指数值的中位数略高于100
B.这20天中的中度污染及以上的天数占
C.该市12月的前半个月的空气质量越来越好
D.总体来说,该市12月上旬的空气质量比中旬的空气质量好
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com