精英家教网 > 高中数学 > 题目详情
14.已知定义域为(-1,1)的函数f(x)是减函数,且f(a-3)-f(a2-9)<0,求a的取值范围.

分析 f(a-3)-f(a2-9)<0,由于f(x)是定义域为(-1,1)的减函数,可得1>a-3>a2-9>-1,解出即可.

解答 解:由f(a-3)-f(a2-9)<0,化为f(a-3)<f(a2-9),
∵f(x)是定义域为(-1,1)的减函数,
∴1>a-3>a2-9>-1,
解得2$\sqrt{2}$<a<4.
∴a的取值范围是$(2\sqrt{2},4)$.

点评 本题考查了函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:元/千克)与销售价格x(单位:元/千克)满足关系式$y=\frac{m}{x-3}+8{({x-6})^2}$,其中3<x<6,m为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ) 求m的值;
(Ⅱ) 若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数g(x)=ex+ae-x(x∈R)是奇函数,则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{4}$π$\frac{7π}{4}$$\frac{5π}{2}$$\frac{13π}{4}$
Asin(ωx+φ)030-30
(Ⅰ)请将上表空格中处所缺的数据填写在答题卡的相应位置上,并直接写出函数f(x)的解析式;
(Ⅱ)将y=f(x)图象上所有点的横坐标缩短为原来的$\frac{1}{3}$,再将所得图象向左平移$\frac{π}{4}$个单位,得到y=g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数f(x)=(x+1)3ex+1的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等比数列{an}中,a6=2,公比q>0,则log2a1+log2a2+log2a3+…+log2a11=11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下面命题:①{1,2,3,4}是由四个元素组成的集合;②集合{0}表示仅有一个数“0”组成的集合;③集合{1,2,3}与{3,1,2}是同一个集合;④集合{小于1的正有理数}是一个有限集,其中正确的是(  )
A.①,②,③B.②,③,④C.③,④D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示,定点A和B都在平面α内,顶点P∉α,PB⊥α,C是α内异于A和B的动点,且PC⊥AC,则BC与AC的位置关系是AC⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+\frac{3}{4}(x≤0)}\\{lnx+a(x>0)}\end{array}\right.$的图象在A,B两点处的切线重合,则实数a的取值范围为(-∞,ln2+$\frac{11}{4}$).

查看答案和解析>>

同步练习册答案