精英家教网 > 高中数学 > 题目详情
椭圆的离心率为,且过点直线与椭圆M交于A、C两点,直线与椭圆M交于B、D两点,四边形ABCD是平行四边形
(1)求椭圆M的方程;
(2)求证:平行四边形ABCD的对角线AC和BD相交于原点O;
(3)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值
(1);(2)详见解析;(3)最小值为

试题分析:(1)依题意有,再加上,解此方程组即可得的值,从而得椭圆 的方程(2)由于四边形ABCD是平行四边形,所以ABCD的对角线AC和BD的中点重合
利用(1)所得椭圆方程,联立方程组消去得:,显然点A、C的横坐标是这个方程的两个根,由此可得线段的中点为 同理可得线段的中点为,由于中点重合,所以,解得:(舍)这说明都过原点即相交于原点(3)由于对角线过原点且该四边形为菱形,所以其面积为由方程组易得点A的坐标(用表示),从而得(用表示);同理可得(由于,故仍可用表示)这样就可将表示为的函数,从而求得其最小值
试题解析:(1)依题意有,又因为,所以得
故椭圆的方程为                                    3分
(2)依题意,点满足
所以是方程的两个根

所以线段的中点为 
同理,所以线段的中点为         5分
因为四边形是平行四边形,所以
解得,(舍)
即平行四边形的对角线相交于原点                7分
(3)点满足
所以是方程的两个根,即

同理,                     9分
又因为,所以,其中
从而菱形的面积

整理得,其中                 10分
故,当时,菱形的面积最小,该最小值为      12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点,长轴的左、右端点分别为,且.
(1)求椭圆的方程;
(2)过焦点斜率为)的直线交椭圆两点,弦的垂直平分线与轴相交于点. 试问椭圆上是否存在点使得四边形为菱形?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

以椭圆的一个顶点为直角顶点作此椭圆的内接等腰直角三角形,试问:(1)这样的等腰直角三角形是否存在?若存在,写出一个等腰直角三角形两腰所在的直线方程。若不存在,说明理由。(2)这样的等腰直角三角形若存在,最多有几个?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆)的焦距为,且过点(),右焦点为.设上的两个动点,线段的中点的横坐标为,线段的中垂线交椭圆两点.

(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,一个焦点为F(0,),且长轴长与短轴长的比是∶1.
 
(1)求椭圆C的方程;
(2)若椭圆C上在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PAPB分别交椭圆C于另外两点AB,求证:直线AB的斜率为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的左焦点为,右焦点为,过的直线交椭圆于两点, 的周长为8,且面积最大时,为正三角形.

(1)求椭圆的方程;
(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,证明:点在以为直径的圆上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的离心率为轴被曲线截得的线段长等于的短轴长。轴的交点为,过坐标原点的直线相交于点,直线分别与相交于点

(1)求的方程;
(2)求证:
(3)记的面积分别为,若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆与椭圆中心在原点,焦点均在轴上,且离心率相同.椭圆的长轴长为,且椭圆的左准线被椭圆截得的线段长为,已知点是椭圆上的一个动点.

⑴求椭圆与椭圆的方程;
⑵设点为椭圆的左顶点,点为椭圆的下顶点,若直线刚好平分,求点的坐标;
⑶若点在椭圆上,点满足,则直线与直线的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若实数xy满足x|x|-y|y|=1,则点(xy)到直线yx的距离的取值范围是(  )
A.[1,) B.(0,]C.D.(0,1]

查看答案和解析>>

同步练习册答案