精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C的标准方程是

)求它的焦点坐标和准线方程;

)直线过已知抛物线C的焦点且倾斜角为45°,且与抛物线的交点为A、B,求线段AB的长度.

【答案】焦点为F(,0),准线方程:12

【解析】

试题分析:(1)抛物线的标准方程是,焦点在x轴上,开口向右,2p=6,即可求出抛物线的焦点坐标和准线方程;(2)先根据题意给出直线l的方程,代入抛物线,求出两交点的横坐标的和,然后利用焦半径公式求解即可

试题解析:(1)抛物线的标准方程是,焦点在x轴上,开口向右,焦点为F(,0),准线方程:……………………4分

(2)直线过已知抛物线的焦点且倾斜角为45°

直线的方程为………………………………………5分

代入抛物线,化简得………………7分

,则

所以

故所求的弦长为12.…………………………………………………10分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 是边长为3的正方形, 平面 平面 .

(1)证明:平面平面

(2)在上是否存在一点,使平面将几何体分成上下两部分的体积比为?若存在,求出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.

(1)求证:GH平面CDE;

(2)若CD=2,DB=4,求四棱锥F—ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线).

(1)证明:直线过定点;

(2)若直线不经过第四象限,求的取值范围;

(3)若直线轴负半轴于,交轴正半轴于,△的面积为为坐标原点),求的最小值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设分别为椭圆的左、右两个焦点.
)若椭圆上的点两点的距离之和等于6,写出椭圆的方程和焦点坐标;
)设点是(1)中所得椭圆上的动点,求线段的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点上一点到焦点的距离为.

(1)求的方程;

(2)过作直线,交两点,若直线中点的纵坐标为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数自然对数的底数

求曲线的切线方程;

最大值

其中导函数,证明:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数

1的值;

2,若函数的图象有且只有一个公共点,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把离心率的双曲线称为黄金双曲线.给出以下几个说法:

双曲线是黄金双曲线;

若双曲线上一点到两条渐近线的距离积等于,则该双曲线是黄金双曲线;

为左右焦点,为左右顶点,,则该双曲线是黄金双曲线;

.若直线经过右焦点交双曲线于两点,且,则该双曲线是黄金双曲线;

其中正确命题的序号为 .

查看答案和解析>>

同步练习册答案