精英家教网 > 高中数学 > 题目详情
已知直线和平面,下列推论中错误的是(   )
A.B.
C.D.
D

试题分析:对A,根据线面垂直的性质可知,成立;对B,根据两平行线中的一条垂直于一个平面,则另一条直线也垂直于这个平面可知,正确;对C,如下图(1),假设,设,则,由可知,而,由线面垂直的判定定理可知垂直于两交线确定的平面,记该平面为,根据过空间一点有且只有一个平面与已知直线垂直可知重合,由,可得,这与假设矛盾,从而假设不正确,从而,所以C正确,而D不正确,如下图(2),图中各组平面相互平行,而第一组,第二组相交,而第三组异面,故选D.

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四边形均为正方形,平面平面.

(1)求证:平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,矩形中,,,分别为边上的点,且,,将沿折起至位置(如图2所示),连结,其中.

(Ⅰ)求证:平面
(Ⅱ)在线段上是否存在点使得平面?若存在,求出点的位置;若不存在,请说明理由.
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,⊥平面

(1)求证:
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABC-A'B'C'中,D是BC的中点,AA'=AB=2.

(1)求证:A'C//平面AB'D;
(2)求二面角D一AB'一B的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一点,且CD⊥平面PAB.

(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P—ABCD中,ABCD为平行四边形,且BC⊥平面PAB,PA⊥AB,M为PB的中点,PA=AD=2.

(Ⅰ)求证:PD//平面AMC;
(Ⅱ)若AB=1,求二面角B—AC—M的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知、b为两条直线,为两个平面,下列四个命题:
∥b,b∥;       ②
,     ④
其中不正确的有(     )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是两条不同的直线,是两个不同的平面,有下列五个命题
 ②
 ④

其中真命题的序号是__________________________(把所有真命题的序号都填上)

查看答案和解析>>

同步练习册答案