精英家教网 > 高中数学 > 题目详情

已知数列满足,.
(1)若为递增数列,且成等差数列,求的值;
(2)若,且是递增数列,是递减数列,求数列的通项公式.

(1)   (2)

解析试题分析:(1)利用数列的单调性,得到的符号去掉的绝对值,再分布令得到之间的关系,再利用题目已知等差中项的性质列出关于的等式,即可求出的值.
(2)根据数列为奇数和偶数的单调性可得到,两不等式变为同号相加即可得到,根据题意可得结合可去掉的绝对值,分为奇或偶数,利用叠加法即可求出数列的通项公式.
(1)因为数列为递增数列,所以,则,分别令可得,因为成等差数列,所以,
时,数列为常数数列不符合数列是递增数列,所以.
(2)由题可得,因为是递增数列且是递减数列,所以,则有,因为
(2)由题可得,因为是递增数列且是递减数列,所以,两不等式相加可得,
又因为,所以,即,
同理可得,所以,
则当时,,这个等式相加可得
.
时, ,这个等式相加可得
,当时,符合,故
综上

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{an}各项均为正数,其前n项和为Sn,且满足4Sn=(an+1)2.[来
(1)求{an}的通项公式;(2)设bn=,数列{bn}的前n项和为Tn,求Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是首项的递增等差数列,为其前项和,且
(1)求数列的通项公式;
(2)设数列满足为数列的前n项和.若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为
(1)求数列的通项公式;
(2)若,求数列的前100项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是递增的等差数列,是方程的根。
(I)求的通项公式;
(II)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的公差,设的前项和为
(1)求
(2)求)的值,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足为常数,
(1)当时,求
(2)当时,求的值;
(3)问:使恒成立的常数是否存在?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{}中,,前项和
(1)求通项
(2)若从数列{}中依次取第项、第项、第项…第项……按原来的顺序组成一个新的数列{},求数列{}的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设Sn表示数列的前n项和.
(1)若为等差数列,  推导Sn的计算公式;
(2)若, 且对所有正整数n, 有. 判断是否为等比数列.

查看答案和解析>>

同步练习册答案