精英家教网 > 高中数学 > 题目详情
已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f(x)在点M(1,f(1))处的切线方程为
x+y+1=0
x+y+1=0
分析:对f(x)=2xf′(1)+lnx,两边求导后令x=1,可求得f′(1),即切线斜率,在等式中令x=1求得f(1),据点斜式即可求得切线方程.
解答:解:对f(x)=2xf′(1)+lnx,两边求导得f′(x)=2f′(1)+
1
x

令x=1得f′(1)=2f′(1)+1,解得f′(1)=-1,
所以f(1)=2(-1)+0=-2,
所以在点M处的切线方程为:y-(-2)=-(x-1),即x+y+1=0,
故答案为:x+y+1=0.
点评:本题考查利用导数研究曲线上某点切线方程,考查学生对问题的分析解决能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、已知函数f(x)的导函数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

14、已知函数f(x)的导函数f′(x)=2x-5,且f(0)的值为整数,当x∈(n,n+1](n∈N*)时,f(x)的值为整数的个数有且只有1个,则n=
2

查看答案和解析>>

科目:高中数学 来源: 题型:

18、已知函数f(x)的导数f″(x)满足0<f′(x)<1,常数a为方程f(x)=x的实数根.
(Ⅰ)若函数f(x)的定义域为M,对任意[a,b]⊆M,存在x0∈[a,b],使等式f(b)-f(a)=(b-a)f″(x0)成立,求证:方程f(x)=x存在唯一的实数根a;
(Ⅱ) 求证:当x>a时,总有f(x)<x成立;
(Ⅲ)对任意x1、x2,若满足|x1-a|<2,|x2-a|<2,求证:|f(x1)-f(x2)|<4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数为f'(x),且满足f(x)=2xf'(1)+lnx,则f(1)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数f′(x)的图象如图所示,那么(  )

查看答案和解析>>

同步练习册答案