精英家教网 > 高中数学 > 题目详情
已知向量
m
=(2cosx,2sinx),
n
=(cosx,
3
cosx),设f(x)=
m
n
-1.
(I)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(
C
2
)=2
,且acosB=bcosA,试判断△ABC的形状.
(I)由于函数f(x)=
m
n
-1=2cos2x+2
3
sinxcosx-1=cos2x+
3
sin2x=2sin(2x+
π
6
),
令 2kπ-
π
2
≤2x+
π
6
≤2kπ+
2
,k∈z,求得 kπ-
π
3
≤x≤kπ+
3
,k∈z.
故函数的增区间为[kπ-
π
3
,kπ+
3
],k∈z.
(Ⅱ)在△ABC中,由于f(
C
2
)=2
=2sin(C+
π
6
),∴sin(C+
π
6
)=1,∴C=
π
3

再由 acosB=bcosA,利用正弦定理可得 ainAcosB=sinBcosA,∴sin(A-B)=0.
再由-π<A-B<π,可得 A-B=0,故 A=B=C=
π
3

故△ABC为等边三角形.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(2cosx,2sinx),
n
=(cosx,
3
cosx),设f(x)=
m
n
-1.
(I)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(
C
2
)=2
,且acosB=bcosA,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量m=(2cosx,2sinx),n=(cosx,
3
cosx),设f(x)=m•n-1.
(I)求f(
π
6
)
的值;
(Ⅱ)求函数f(x)的最小正周期单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2cosx,1),
n
=(cosx,
3
sin2x),f(x)=
m
n

(1)求f(x)的最小正周期和最大值;
(2)在△ABC中,a,b,c分别是角A、B、C的对边,且f(A)=2,a=
3
,b=1,求角C.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市高二(下)期末数学试卷(文科)(解析版) 题型:解答题

已知向量m=(2cosx,2sinx),n=(cosx,cosx),设f(x)=m•n-1.
(I)求的值;
(Ⅱ)求函数f(x)的最小正周期单调递增区间.

查看答案和解析>>

同步练习册答案