精英家教网 > 高中数学 > 题目详情

【题目】 A 、B 、Ai 为集合.

(1)满足 A B ={a , b}的集合有序对(A , B)有多少对 ? 为什么 ?

(2)满足 A B ={a1 , a2 , …, }的集合有序对(A , B)有多少对? 为什么?

(3)满足的集合有序组有多少组? 为什么 ?

【答案】(1)9 (2) (3)

【解析】

(1)9 (2) (3) (1)、(2)都是(3)的特例, 故只证(3).

确定集合有序组的组数可分 n.

第一步考虑 属于的可能, 两种可能, 也有两种可能…, 来说也有两种可能,这样共有 2k 种可能.

但因A1 A 2 ={a1 , a2 , … , an},所以应排除,…,的可能, 故有2k-1 种可能.

同理, 第二步考虑 a2 属于 A1, A 2, …, Ak 的可能, 也有 2k -1 种可能. ……

n 步考虑an 属于 A1 , A 2 , …, Ak 的可能, 也有2k -1 种可能.

由乘法原理, (A 1 , A2 , …, Ak)的组数是(2k -1)n .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数=lnx+ax2+(2a+1)x

(1)讨论的单调性;

(2)当a﹤0时,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,点在底面上的射影是的中点

1)求证:直线平面

2)若分别为的中点,求直线与平面所成角的正弦值;

3)当四棱锥的体积最大时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家质量监督检验检疫局于2004531日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人血液中的酒精含量大于或等于20毫克/百毫升、小于80毫克/百毫升的行为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车,经过反复试验,喝一瓶啤酒后酒精在人体血液内的变化规律散点图如下:

该函数模型如下,

.

根据上述条件,回答以下问题:

1)试计算喝1瓶啤酒后多少小时血液中的酒精含量达到最大值?最大值是多少?

2)试计算喝1瓶啤酒后多少小时才可以驾车?(时间以整小时计)(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是( )

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,每人需交费用为900元;若旅行团人数多于30,则给予优惠:每多1,人均费用减少10,直到达到规定人数75人为止.旅行社需支付各种费用共计15000元.

1)写出每人需交费用关于人数的函数;

2)旅行团人数为多少时,旅行社可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数满足,且在区间上单调,又不等式对一切恒成立.

1)求函数的解析式;

2)若函数在区间的零点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了缓解市民吃肉难的生活问题,某生猪养殖公司欲将一批猪肉用冷藏汽车从甲地运往相距千米的乙地,运费为每小时元,装卸费为元,猪肉在运输途中的损耗费(单位:元)是汽车速度值的.(说明:运输的总费用=运费+装卸费+损耗费)

1)若汽车的速度为每小时千米,试求运输的总费用;

2)为使运输的总费用不超过元,求汽车行驶速度的范围;

3)若要使运输的总费用最小,汽车应以每小时多少千米的速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为丰富市民的文化生活,市政府计划在一块半径为100m的扇形土地OAB上建造市民广场.规划设计如图:矩形EFGH(其中E,F在圆弧AB上,G,H在弦AB上)区域为运动休闲区,△OAB区域为文化展示区,其余空地为绿化区域,已知P为圆弧AB中点,OPABM,cos∠POB=,记矩形EFGH区域的面积为Sm2

(1)设∠POF=θ(rad),将S表示成θ的函数;

(2)求矩形EFGH区域的面积S的最大值.

查看答案和解析>>

同步练习册答案