精英家教网 > 高中数学 > 题目详情
2.欧阳修《煤炭翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.
可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为1.5cm圆,中间有边长为0.5cm的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为(  )
A.$\frac{4}{9π}$B.$\frac{9}{4π}$C.$\frac{4π}{9}$D.$\frac{9π}{4}$

分析 由题意分别求圆和正方形的面积,由几何概型的概率公式可得.

解答 解:由题意可得铜钱的面积S=π×($\frac{1.5}{2}$)2=$\frac{9}{16}$π,
边长为0.5cm的正方形孔的面积S′=0.52=$\frac{1}{4}$,
∴所求概率P=$\frac{S′}{S}$=$\frac{4}{9π}$
故选:A

点评 本题考查简单几何概型,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知f(x)是奇函数,且当x≥0时,f(x)=x(1+x),则f(-2)=(  )
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则函数f(x)的图象关于点(a,b)对称.
(1)已知函数f(x)=$\frac{{{x^2}+mx+m}}{x}$的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(-∞,0)上的解析式;
(3)在(1)、(2)的条件下,若对实数x<0及t>0,恒有g(x)<f(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若f(x)=$\root{3}{2x+4}$,则f(2)=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.写出集合{(1,2),(3,4)}的真子集:∅,{(1,2)},{(3,4)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+2ax+1-a在区间[0,1]上的最大值是2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)如果${3^{-5x}}>{({\frac{1}{3}})^{x+6}}$,求x的取值范围?
(2)如果loga(2x)>loga(-x+9),求x的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.
(Ⅰ)求证:平面BDGH∥平面AEF;
(Ⅱ)求二面角H-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=$±\sqrt{2}$.

查看答案和解析>>

同步练习册答案