精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.若sinC+sin(B﹣A)=sin2A,则△ABC的形状为(
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形

【答案】D
【解析】解:∵sinC+sin(B﹣A)=sin2A, ∴sin(A+B)+sin(B﹣A)=sin2A,
∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,
∴2cosAsinB=sin2A=2sinAcosA,
∴2cosA(sinA﹣sinB)=0,
∴cosA=0,或sinA=sinB,
∴A= ,或a=b,
∴△ABC为等腰三角形或直角三角形
故选:D.
【考点精析】解答此题的关键在于理解两角和与差的正弦公式的相关知识,掌握两角和与差的正弦公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,多面体ABCDPE的底面ABCD是平行四边形,AD=AB=2, =0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2,则二面角A﹣PB﹣E的大小为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(4,5cosα), =(3,﹣4tanα),α∈(0, ),
(1)求| |;
(2)求cos( +α)﹣sin(α﹣π).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式: (sin 2+(sin 2= ×1×2;
(sin 2+(sin 2+(sin 2+sin( 2= ×2×3;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×3×4;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×4×5;

照此规律,
(sin 2+(sin 2+(sin 2+…+(sin 2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,﹣4).
(1)求BC边上的中线所在直线的方程;
(2)求BC边上的高所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的离心率为 ,两个顶点分别为A(﹣a,0),B(a,0),点M(﹣1,0),且3 = ,过点M斜率为k(k≠0)的直线交椭圆E于C,D两点,其中点C在x轴上方.
(1)求椭圆E的方程;
(2)若BC⊥CD,求k的值;
(3)记直线AD,BC的斜率分别为k1 , k2 , 求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中, (Ⅰ)求证: 是等比数列,并求{an}的通项公式an
(Ⅱ)数列{bn}满足 ,数列{bn}的前n项和为Tn , 若不等式 对一切n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{an}中,a1=2,a3 , a2+a4 , a5成等差数列.
(1)求数列{an}的通项公式
(2)若数列{bn}满足b1+ +…+ =an(n∈N*),{bn}的前n项和为Sn , 求使Sn﹣nan+6≥0成立的正整数n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种放射性元素的原子数N随时间t的变化规律是N=N0e﹣λt , 其中e=2.71828…为自然对数的底数,N0 , λ是正的常数
(Ⅰ)当N0=e3 , λ= , t=4时,求lnN的值
(Ⅱ)把t表示原子数N的函数;并求当N= , λ=时,t的值(结果保留整数)

查看答案和解析>>

同步练习册答案
閸忥拷 闂傦拷