精英家教网 > 高中数学 > 题目详情

在如图所示的几何体中,是边长为2的正三角形. 若平面,平面平面, ,且

(1)求证://平面;
(2)求证:平面平面.

(1)证明详见解析;(2)证明详见解析.

解析试题分析:(1)取的中点,连接,先根据已知条件证出平面,再证,最后得出∥平面;(2)先判断四边形是平行四边形,利用已知证明平面平面,所以,再证明平面,所以平面⊥平面.
试题解析:

(1) 取的中点,连接,
因为,且
所以, , .                       1分
又因为平面⊥平面,
所以平面                                      3分
因为平面,
所以,                                             4分
又因为平面,平面,                   5分
所以∥平面.                                       6分
(2)由(1)已证,又,,
所以四边形是平行四边形,                           7分
所以.                                           8分
由(1)已证,又因为平面⊥平面,
所以平面,                                    10分
所以平面 .             

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

四棱锥中,⊥底面,,,.

(Ⅰ)求证:⊥平面;
(Ⅱ)若侧棱上的点满足,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,底面是正方形,侧面是正三角形,平面底面

(I) 证明:平面
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为矩形,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为菱形,的中点。

(1)若,求证:平面
(2)点在线段上,,试确定的值,使

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知为圆的直径,点为线段上一点,且,点为圆上一点,且.点在圆所在平面上的正投影为点

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,曲线处的切线过点.
(Ⅰ)求函数的解析式;
(Ⅱ)当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直角梯形中,是边长为2的等边三角形,.沿折起,使处,且;然后再将沿折起,使处,且面在面的同侧.

(Ⅰ) 求证:平面
(Ⅱ) 求平面与平面所构成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是正方形,⊥面,且是侧棱的中点.

(1)求证∥平面
(2)求证平面平面
(3)求直线与底面所成的角的正切值.

查看答案和解析>>

同步练习册答案