精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=
(1)求函数f(x)的零点;
(2)若实数t满足f(log2t)+f(log2 )<2f(2),求f(t)的取值范围.

【答案】
(1)解:当x<0时,解 得:x=ln =﹣ln3,

当x≥0时,解 得:x=ln3,

故函数f(x)的零点为±ln3


(2)解:当x>0时,﹣x<0,

此时f(﹣x)﹣f(x)= = =0,

故函数f(x)为偶函数,

又∵x≥0时,f(x)= 为增函数,

∴f(log2t)+f(log2 )<2f(2)时,2f(log2t)<2f(2),

即|log2t|<2,

﹣2<log2t<2,

∴t∈( ,4)

故f(t)∈(


【解析】(1)分类讨论,函数对应方程根的个数,综合讨论结果,可得答案.(2)分析函数的奇偶性和单调性,进而可将不等式化为|log2t|<2,解得f(t)的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=lnx,g(x)= +mx+ (m<0),直线l与函数f(x)的图象相切,切点的横坐标为1,且直线l与函数g(x)的图象也相切.
(1)求直线l的方程及实数m的值;
(2)若h(x)=f(x+1)﹣g′(x)(其中g′(x)是g(x)的导函数),求函数h(x)的最大值;
(3)当0<b<a时,求证:f(a+b)﹣f(2a)<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(1)求的单调区间;

(2)设,且有两个极值点,其中,求的最小值;

(3)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 ﹣3(ω>0)
(1)若 是最小正周期为π的偶函数,求ω和θ的值;
(2)若g(x)=f(3x)在 上是增函数,求ω的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=2AA1 , ∠ABC=90°,D是BC的中点.

(1)求证:A1B∥平面ADC1
(2)求二面角C1﹣AD﹣C的余弦值;
(3)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E点位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列式子中成立的是(
A.log 4<log 6
B.( 0.3>( 0.3
C.( 3.4<( 3.5
D.log32>log23

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等比数列{an}中,a1=1,且a2是a1和a3﹣1的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=2n﹣1+an(n∈N*),求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在(﹣∞,0)∪(0,+∞)上的奇函数,在区间(﹣∞,0)单调递增且f(﹣1)=0.若实数a满足 ,则实数a的取值范围是(
A.[1,2]
B.
C.(0,2]
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:

日期

11月1日

11月2日

11月3日

11月4日

11月5日

温差x(℃)

8

11

12

13

10

发芽数y(颗)

16

25

26

30

23

设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(注:
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y关于x的线性回归方程
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

同步练习册答案