已知函数f(x)=loga (a>0,且a≠1,b>0).
(1)求f(x)的定义域;
(2)讨论f(x)的奇偶性;
(3)讨论f(x)的单调性.
(1)f(x)的定义域为(-∞,-b)∪(b,+∞)(2)f(x)为奇函数(3) 当0<a<1时,f(x)分别在(-∞,-b)和(b,+∞)上是增函数;
当a>1时,f(x)分别在(-∞,-b)和(b,+∞)上是减函数.
(1)由>0(x+b)(x-b)>0.
解得f(x)的定义域为(-∞,-b)∪(b,+∞).
(2)∵f(-x)=loga(
∴f(x)为奇函数.
(3)令u(x)=,则u(x)=1+
它在(-∞,-b)和(b,+∞)上是减函数.
∴当0<a<1时,f(x)分别在(-∞,-b)和(b,+∞)上是增函数;
当a>1时,f(x)分别在(-∞,-b)和(b,+∞)上是减函数.
科目:高中数学 来源: 题型:
1 |
3 |
3 |
2 |
f′(x) |
x |
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
2 |
1 |
e |
查看答案和解析>>
科目:高中数学 来源: 题型:
1 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
1 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
3 | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com