精英家教网 > 高中数学 > 题目详情
已知椭圆C的一个焦点F与抛物线y2=12x的焦点重合,且椭圆C上的点到焦点F的最大距离为8.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点P(m,n)是椭圆C上的一动点,求直线l:mx+ny=1被圆O:x2+y2=1所截得的弦长的取值范围.
分析:(I)算出抛物线焦点F(3,0),设椭圆C的方程为
x2
a2
+
y2
b2
=1
(a>b>0),结合题意建立关于a、b、c的方程组,解出a、b、c的值,即可得到椭圆C的标准方程;
(II)由点到直线的距离公式,算出0到l的距离d=
1
m2+n2
<1=r,从而利用垂径定理算出直线l被圆0截得的弦长L=2
1-
1
9
25
m2+16
,由椭圆的性质得0≤m2≤25,代入加以计算可得直线l被圆0截得的弦长的取值范围.
解答:解:(Ⅰ)抛物线y2=12x的焦点是F(3,0),
设椭圆C的方程为
x2
a2
+
y2
b2
=1
(a>b>0),
c=3
a+c=8
a2=b2+c2
,解之得a=5,b=4,c=3,
所以椭圆C的方程为
x2
25 
+
y2
16 
=1
…(4分)
(Ⅱ)∵点P(m,n)在椭圆C上运动,所以1=
m2
25 
+
n2
16 
<m2+n2
又∵直线l与圆0相交,
∴圆心0到直线l的距离d=
1
m2+n2
<1=r.
直线l被圆0截得的弦长为
L=2
r2-d2
=2
1-
1
m2 +n2
=2
1-
1
9
25
m2+16

由于0≤m2≤25,所以16≤
9
25
m2+16
≤25,则L∈[
15
2
4
6
5
],
即直线l被圆0截得的弦长的取值范围是[
15
2
4
6
5
]…(8分)
点评:本题给出椭圆与抛物线满足的条件,求椭圆的方程并依此求直线圆单位圆截得弦长的取值范围.着重考查了椭圆、抛物线的简单几何性质和直线与圆的位置关系等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•黄埔区一模)给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在原点O、半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0)
,其短轴的一个端点到点F的距离为
3

(1)求椭圆C和其“准圆”的方程;
(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求
AB
AD
的取值范围;
(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在原点O、半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0)
,其短轴的一个端点到点F的距离为
3

(1)求椭圆C和其“准圆”的方程;
(2)过椭圆C的“准圆”与y轴正半轴的交点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,求l1,l2的方程;
(3)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求
AB
AD
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的一个焦点为F(0,1),过点F且垂直于长轴的直线被椭圆C截得的弦长为
2
;P,Q,M,N为椭圆C上的四个点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若
PF
FQ
MF
FN
PF
FM
=0
,求四边形PMQN的面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省高三3月月考数学试卷(解析版) 题型:解答题

(本小题满分15分)

给定椭圆C:,称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为,其短轴的一个端点到点的距离为

(1)求椭圆C和其“准圆”的方程;

(2)若点是椭圆C的“准圆”与轴正半轴的交点,是椭圆C上的两相异点,且轴,求的取值范围;

(3)在椭圆C的“准圆”上任取一点,过点作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

 

查看答案和解析>>

同步练习册答案