【题目】设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=lnx,f(1)= , 则下列结论正确的是( )
A.xf(x)在(0,+∞)单调递增
B.xf(x)在(1,+∞)单调递减
C.xf(x)在(0,+∞)上有极大值
D.xf(x)在(0,+∞)上有极小值
科目:高中数学 来源: 题型:
【题目】某汽车的使用年数x与所支出的维修费用y的统计数据如表:
使用年数x(单位:年) | 1 | 2 | 3 | 4 | 5 |
维修总费用y(单位:万元) | 0.5 | 1.2 | 2.2 | 3.3 | 4.5 |
根据上表可得y关于x的线性回归方程 = x﹣0.69,若该汽车维修总费用超过10万元就不再维修,直接报废,据此模型预测该汽车最多可使用( )
A.8年
B.9年
C.10年
D.11年
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=aln(x+1)﹣x2在区间(0,1)内任取两个实数p,q,且p≠q,不等式 >1恒成立,则实数a的取值范围为( )
A.[15,+∞)
B.(﹣∞,15]
C.(12,30]
D.(﹣12,15]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)对于x,y∈R.
(1)若f(x+y)=f(x)+f(y)﹣1,当x>0时,f(x)>1且f(3)=4,
①求f(x)的单调性;
②f(x)在[1,2]上的最大值和最小值.
(2)若f(x)+f(y)=2f()f(),f(0)≠0,且存在非零常数c,使f(c)=0.
①判断f(x)的奇偶性并证明;
②求证f(x)为周期函数并求出f(x)的一个周期.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题p:方程x2+mx+1=0有两个不等的正实数根,命题q:方程4x2+4(m+2)x+1=0无实数根.若“p或q”为真命题,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)若f(x)在区间(1,2)上单调递增,求a的取值范围;
(Ⅲ)讨论函数g(x)=f'(x)﹣x的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= + .
(1)求f(x)≥f(4)的解集;
(2)设函数g(x)=k(x﹣3),k∈R,若f(x)>g(x)对任意的x∈R都成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与抛物线C的交点为Q,且|QF|=2|PQ|,过F的直线l与抛物线C相交于A,B两点.
(1)求C的方程;
(2)设AB的垂直平分线l'与C相交于M,N两点,试判断A,M,B,N四点是否在同一个圆上?若在,求出l的方程;若不在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com