【题目】已知函数=.
(1)求函数的单调递增区间;
(2)已知在△ABC中,A,B,C的对边分别为a,b,c,若,,求.
【答案】(1)函数的单调递增区间是(2)b=c=2
【解析】
(1)利用诱导公式、二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用正弦函数的单调性解不等式,可得到函数的递增区间;(2)由,求得,利用余弦定理,结合,列方程组可求得的值.
(1)∵ =sin(3π+x)·cos(πx)+cos2(+x),
∴ (cos x)+(sin x)
=,
由 2kπ2x-2kπ+,k∈Z,
可得函数的单调递增区间是k∈Z.
(2)由,得,sin(2A-)+=,
∵0<A<π,∴0<2A<2π,
∵a=2,b+c=4 ①,
根据余弦定理得,
4=+2bccos A=+bc=(b+c)3bc=163bc,
∴bc=4 ②,
联立①②得,b=c=2..
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点,圆,以动点为圆心的圆经过点,且圆与圆内切.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)若直线过点,且与曲线交于两点,则在轴上是否存在一点,使得轴平分?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人设计一项单人游戏,规则如下:先将一棋子放在如右图所示的正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为(=1,2,,6),则棋子就按逆时针方向行走个单位,一直循环下去.某人抛掷三次骰子后,棋子恰好又回到点A处的所有不同走法共有
A.22种B.24种C.25种D.36种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,动圆与圆外切,且圆与直线相切,记动圆圆心的轨迹为曲线.
(1)求曲线的轨迹方程;
(2)设过定点的动直线与曲线交于两点,试问:在曲线上是否存在点(与两点相异),当直线的斜率存在时,直线的斜率之和为定值?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com