精英家教网 > 高中数学 > 题目详情

【题目】已知直线l:x﹣y=1与圆M:x2+y2﹣2x+2y﹣1=0相交于A,C两点,点B,D分别在圆M上运动,且位于直线AC两侧,则四边形ABCD面积的最大值为

【答案】
【解析】解:把圆M:x2+y2﹣2x+2y﹣1=0化为标准方程:(x﹣1)2+(y+1)2=3,圆心(1,﹣1),半径r=
直线与圆相交,由点到直线的距离公式的弦心距d= =
由勾股定理的半弦长= = ,所以弦长|AB|=2× =
又B,D两点在圆上,并且位于直线AC的两侧,
四边形ABCD的面积可以看成是两个三角形△ABC和△ACD的面积之和,
如图所示,
当B,D为如图所示位置,即BD为弦AC的垂直平分线时(即为直径时),
两三角形的面积之和最大,即四边形ABCD的面积最大,
最大面积为:S= ×|AB|×|CE|+ ×|AB|×|DE|
= =
所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正方形的中心为直线和直线的交点,其一边所在直线方程为

(1)写出正方形的中心坐标;

(2)求其它三边所在直线的方程(写出一般式).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),曲线C的参数方程为 (θ为参数)
(1)以原点O为极点,以x轴正半轴为极轴(与直角坐标系xOy取相同的长度单位)建立极坐标系,若点P的极坐标为(4, ),判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,利用曲线C的参数方程求Q到直线l的距离的最大值与最小值的差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=6cos2 + sinωx﹣3(ω>2)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且ABC为正三角形.

(1)求ω的值;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=log2 +a).
(1)当a=5时,解不等式f(x)>0;
(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.
(3)设a>0,若对任意t∈[ ,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0),离心率为 ,左准线方程是x=﹣2,设O为原点,点A在椭圆C上,点B在直线y=2上,且OA⊥OB.

(1)求椭圆C的方程;
(2)求△AOB面积取得最小值时,线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为F1,F2,P是椭圆上一点,|PF1|=λ|PF2| ,,则椭圆离心率的取值范围为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}为等差数列,数列{bn}为等比数列.若a1<a2 , b1<b2 , 且bi=ai2(i=1,2,3),则数列{bn}的公比为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的极坐标方程为ρ2cos2θ=18,曲线C2的极坐标方程为θ= ,曲线C1 , C2相交于A,B两点.
(1)求A,B两点的极坐标;
(2)曲线C1与直线 (t为参数)分别相交于M,N两点,求线段MN的长度.

查看答案和解析>>

同步练习册答案