精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
25
+
y2
9
=1
,F1,F2分别为其左右焦点,椭圆上一点M到F1的距离是2,N是MF1的中点,则|ON|的长是(  )
A.1B.2C.3D.4
∵椭圆方程为
x2
25
+
y2
9
=1

∴椭圆的a=5,长轴2a=10,可得椭圆上任意一点到两个焦点F1、F2距离之和等于10.
∴|MF1|+|MF2|=10
∵点M到左焦点F1的距离为2,即|MF1|=2,
∴|MF2|=10-2=8,
∵△MF1F2中,N、O分别是MF1、F1F2中点
∴|ON|=
1
2
|MF2|=4.
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知θ为斜三角形的一个内角,曲线F:x2sin2θcos2θ+y2sin2θ=cos2θ是(  )
A.焦点在x轴上,离心率为sinθ的双曲线
B.焦点在x轴上,离心率为sinθ的椭圆
C.焦点在y轴上,离心率为|cosθ|的双曲线
D.焦点在y轴上,离心率为|cosθ|的椭圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求以椭圆
x2
16
+
y2
9
=1的短轴的两个端点为焦点,且过点A(4,-5)的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若M,N是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
上关于原点对称的两个点,P是椭圆C上任意一点.若直线PM、PN斜率存在,则它们斜率之积为(  )
A.
a2
b2
B.-
a2
b2
C.
b2
a2
D.-
b2
a2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设点P是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
与圆x2+y2=3b2的一个交点,F1,F2分别是椭圆的左、右焦点,且|PF1|=3|PF2|,则椭圆的离心率为(  )
A.
10
4
B.
3
5
C.
7
4
D.
14
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆的两个焦点,满足
MF1
MF2
的点M总在椭圆内部,则椭圆离心率的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

简化的北京奥运会主体育场“鸟巢”的钢结构俯视图如图所示,内外两圈的钢骨架是离心率相同的椭圆,外层椭圆顶点向内层椭圆引切线AC,BD,设内层椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)
,则外层椭圆方程可设为
x2
(ma)2
+
y2
(mb)2
=1(a>b>0,m>1)
.若AC与BD的斜率之积为-
9
16
,则椭圆的离心率为(  )
A.
7
4
B.
2
2
C.
6
4
D.
3
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
25
+
y2
9
=1
上一点P到左准线的距离为
5
2
,则点P到左焦点的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若焦点在y轴上的椭圆
x2
2
+
y2
m
=1
的离心率e=
1
2
,则m=______.

查看答案和解析>>

同步练习册答案