分析 根据“五点法”作图的步骤,描出五点后,用平滑曲线连接后,即可得到函数$y=cos({x+\frac{π}{6}}),x∈[{-\frac{π}{6},\frac{11π}{6}}]$的简图.
解答 解:
$x+\frac{π}{6}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $-\frac{π}{6}$ | $\frac{π}{3}$ | $\frac{5π}{6}$ | $\frac{4π}{3}$ | $\frac{11π}{6}$ |
y | 1 | 0 | -1 | 0 | 1 |
点评 本题考查的知识点是五点法作函数y=Asin(ωx+φ)的图象,其中描出五个关键点的坐标是解答本题的关键,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | $2\sqrt{3}$ | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | sin15°<sin163°<cos74° | B. | sin15°<cos74°<sin163° | ||
C. | sin163°<sin15°<cos74° | D. | cos74°<sin163°<sin15° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{{{{cos}^2}x}}$ | B. | $-\frac{1}{{{{cos}^2}x}}$ | C. | $\frac{cos2x}{{{{cos}^2}x}}$ | D. | $-\frac{cos2x}{{{{cos}^2}x}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题为:“若方程x2+x-m=0无实数根,则m≤0”. | |
B. | 对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0. | |
C. | 若p∧q为假命题,则p,q中至少一个为假命题. | |
D. | “$θ=2kπ+\frac{π}{6}$”是“$sinθ=\frac{1}{2}$”的充要条件. |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com