精英家教网 > 高中数学 > 题目详情

某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。
(I)求a的值
(II)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大。

(I)a=2(II)4元/千克

解析试题分析:解:(I)因为x=5时,y=11,所以              
(II)由(I)可知,该商品每日的销售量
所以商场每日销售该商品所获得的利润

从而,
于是,当x变化时,的变化情况如下表:


(3,4)
4
(4,6)

+
0
-

单调递增
极大值42
单调递减
由上表可得,x=4是函数在区间(3,6)内的极大值点,也是最大值点;
所以,当x=4时,函数取得最大值,且最大值等于42。
答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大。
考点:导数的应用
点评:导数常应用于求曲线的切线方程、求函数的最值与单调区间、证明不等式和解不等式中参数的取值范围等。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

规定其中为正整数,且=1,这是排列数(是正整数,)的一种推广.
(Ⅰ) 求的值;
(Ⅱ)排列数的两个性质:①,②(其中m,n是正整数).是否都能推广到(是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
(Ⅲ)已知函数,试讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(为非零常数).
(Ⅰ)当时,求函数的最小值; 
(Ⅱ)若恒成立,求的值;
(Ⅲ)对于增区间内的三个实数(其中),
证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的单调递增区间;
(2)若处的切线与直线垂直,求证:对任意,都有
(3)若,对于任意,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求在区间上的最大值;
(2)若函数在区间上存在递减区间,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .
(Ⅰ)当时,求在点处的切线方程;
(Ⅱ)若函数在区间上为单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的单调递增区间;
(2)若处的切线与直线垂直,求证:对任意,都有
(3)若,对于任意,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的图像在处的切线方程;
(Ⅱ)设实数,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求函数的单调区间和极值。
(2)若关于的方程有三个不同实根,求实数的取值范围;
(3)已知当(1,+∞)时,恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案