精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两位同学参加诗词大赛,各答3道题,每人答对每道题的概率均为,且各人是否答对每道题互不影响.

)用表示甲同学答对题目的个数,求随机变量的分布列和数学期望;

)设为事件“甲比乙答对题目数恰好多2”,求事件发生的概率.

【答案】I)见解析;(II.

【解析】

I)确定所有可能的取值,由二项分布概率公式可得每个取值对应的概率,由此得到分布列和数学期望;

II)将事件分成“甲答对道,乙答对题道”和“甲答对道,乙答对题道”两种情况,结合(I)中所求概率,根据独立事件概率公式计算可得结果.

I所有可能的取值为

.

的分布列为

数学期望.

II)由题意得:事件“甲比乙答对题目数恰好多”发生

即:“甲答对道,乙答对题道”和“甲答对道,乙答对题道”两种情况

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校为了增强学生的记忆力和辨识力,组织了一场类似《最强大脑》的PK赛,两队各由4名选手组成,每局两队各派一名选手PK,比赛四局.除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0.假设每局比赛A队选手获胜的概率均为,且各局比赛结果相互独立,比赛结束时A队的得分高于B队的得分的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,为平行四边形ABCD所在平面外一点,M,N分别为AB,PC的中点,平面PAD平面PBC=.

(1)求证:BC∥

(2)MN与平面PAD是否平行?试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设常数.在平面直角坐标系中,已知点,直线,曲线轴交于点、与交于点分别是曲线与线段上的动点.

(1)用表示点到点距离;

(2)设,线段的中点在直线,求的面积;

(3)设,是否存在以为邻边的矩形,使得点上?若存在,求点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数求:

1的单调区间

2的单调区间在[0,3]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在平面与半圆弧所在平面垂直,上异于的点

(1)证明:平面平面

(2)在线段上是否存在点,使得平面?说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,直线 的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.

(1)求直线的普通方程和曲线C的直角坐标方程;

(2)设点P是曲线C上的一个动点,求它到直线的距离d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数R上是增函数,求实数a的取值范围;

2)求所有的实数a,使得对任意时,函数的图象恒在函数图象的下方;

3)若存在,使得关于x的方程有三个不相等的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从岳阳到郴州的快速列车包括起始站和终点站共有六站,将这六站分别记为.有一天,张兵和其他18 名旅客乘同一车厢离开岳阳,这些旅客中有些是湖北人,其他的是湖南人,认识所有同车厢旅客的张兵观测到:除了终点站,在每一站,当火车到达时,这节车厢上的湖南人的数目与下车旅客的数目相同,且这次行程中没有新的旅客进入这节车厢.张兵又进一步观测到:当火车离开站时,车厢内有 12名旅客;当火车离开站时,还有 7 名旅客在这一车厢内;当他准备在站下车时,还有5名旅客在这一车厢内.试问开始时火车的这一节车厢有多少湖北人,有多少湖南人?且在旅途中这些数目如何变化?

查看答案和解析>>

同步练习册答案