(本小题满分12分)
设函数在及时取得极值.
(I)求的值;
(II)若对于任意的,都有成立,求c的取值范围.
(I)(II)
【解析】
试题分析:(I)由题意知,,
因为函数在及时取得极值,所以及是导函数的两个根,
由韦达定理知:,即. ……6分
(II)由(I)知,
所以,
令得:,
所以当时,函数在上单调递增,在上单调递减, ……8分
又因为所以在上的最大值为, ……10分
所以,解得:. ……12分
考点:本小题主要考查由导数研究函数的单调性、极值、最值和恒成立问题,考查学生的转化能力和运算求解能力.
点评:函数的极值点一定是导函数为零的点,但导函数为零的点不一定是极值点;根据函数的极值点和端点处的函数值进行比较,就能得出函数的最值,而恒成立问题一般转化为最值问题进行解决.
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com