精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=a1x+a2x2+…+anxn(n∈N*),且a1,a2,a3,…,an构成数列{an},又f(1)=n2
(1)求数列{an}的通项公式;
(2)求证:$f(\frac{1}{3})<1$.

分析 (1)通过f(1)=a1+a2+…+an=n2(n∈N*),可知当n≥2时,an=n2-(n-1)2=2n-1,进而可得结论;
(2)通过(1)可知f($\frac{1}{3}$)的表达式,进而可知$\frac{1}{3}$f($\frac{1}{3}$)的表达式,利用错位相减法计算可知f($\frac{1}{3}$)=1-$\frac{n+1}{{3}^{n}}$,放缩即得结论.

解答 (1)解:由题意:f(1)=a1+a2+…+an=n2(n∈N*),
当n=1时,a1=1,
当n≥2时,an=(a1+a2+…+an)-(a1+a2+…+an-1)=n2-(n-1)2=2n-1,
∴对n∈N*总有an=2n-1,
即数列{an}的通项公式为an=2n-1;
(2)证明:由(1)可知,f($\frac{1}{3}$)=1•$\frac{1}{{3}^{1}}$+3•$\frac{1}{{3}^{2}}$+…+(2n-1)•$\frac{1}{{3}^{n}}$,
∴$\frac{1}{3}$f($\frac{1}{3}$)=1•$\frac{1}{{3}^{2}}$+3•$\frac{1}{{3}^{3}}$+…+(2n-3)•$\frac{1}{{3}^{n}}$+(2n-1)•$\frac{1}{{3}^{n+1}}$,
两式相减得:$\frac{2}{3}$f($\frac{1}{3}$)=$\frac{1}{{3}^{1}}$+2($\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$)-(2n-1)•$\frac{1}{{3}^{n+1}}$
=$\frac{1}{3}$+2•$\frac{\frac{1}{{3}^{2}}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$-(2n-1)•$\frac{1}{{3}^{n+1}}$
=$\frac{2}{3}$-$\frac{2n+2}{{3}^{n+1}}$,
∴f($\frac{1}{3}$)=$\frac{3}{2}$•($\frac{2}{3}$-$\frac{2n+2}{{3}^{n+1}}$)=1-$\frac{n+1}{{3}^{n}}$<1.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.存在实数a,使得对函数y=g(x)定义域内的任意x,都有a<g(x)成立,则称a为g(x)的下界,若a为所有下界中最大的数,则称a为函数g(x)的下确界.已知x,y,z∈R+且以x,y,z为边长可以构成三角形,则f(x,y,z)=$\frac{xy+yz+zx}{{{{({x+y+z})}^2}}}$的下确界为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在数列{an}中,a1=2,an+1=$\frac{a_n}{{3{a_n}+1}}$(n∈N*),
(1)求a2,a3,a4
(2)归纳猜想数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数在[-2,2]上的函数f(x)是减函数,且为奇函数,f(a2-a-1)+f(4a-5)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.下面一组数据是某生产车间20名工人某日加工零件的个数.
134    112   117   126   128   124   122   116   113   107
116    132   127   128   126   121   120   118   108   110
(1)求这组数据的中位数和平均数;
(2)请设计适当的茎叶图表示这组数据,并根据图说明一下这个车间此日的生产情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.试求:(1)(x3-$\frac{2}{{x}^{2}}$)5的展开式中x5的系数;
(2)(2x2-$\frac{1}{x}$)6的展开式中的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x),g(x)满足关系g(x)=f(x)•f(x+α)(其中α是常数.),请你设计一个函数f(x)及一个α(0<α<π)的值使得g(x)=$\frac{1}{2}$sin2x;那么α=$\frac{π}{2}$f(x)=sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设f(x)=$\frac{1}{3}{x^3}+a{x^2}$+5x+6在区间[1,3]上为单调函数,则实数a的取值范围是(  )
A.[-$\sqrt{5}$,+∞)B.(-∞,-3]C.(-∞,-3]∪[-$\sqrt{5}$,+∞)D.[-$\sqrt{5}$,$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若三个角α、β、γ满足:tanα+tanβ+tanγ=$\frac{17}{6}$,cotα+cotβ+cotγ=-$\frac{4}{5}$,cotα•cotβ+cotβ•cotγ+cotγ•cotα=-$\frac{17}{5}$,则tan(α+β+γ)=11.

查看答案和解析>>

同步练习册答案