精英家教网 > 高中数学 > 题目详情

已知函数.
(1)是否存在点,使得函数的图像上任意一点P关于点M对称的点Q也在函数的图像上?若存在,求出点M的坐标;若不存在,请说明理由;
(2)定义,其中,求
(3)在(2)的条件下,令,若不等式恒成立,求实数的取值范围.

(1)存在,且点的坐标为;(2);(3)的取值范围是.

解析试题分析:(1)先假设点的坐标,根据图象对称的定义列式求出点的坐标即可;(2)利用(1)中条件的条件,并注意到定义中第项与倒数第项的和这一条件,并利用倒序相加法即可求出的表达式,进而可以求出的值;(3)先利用之间的关系求出数列的通项公式,然后在不等式中将与含的代数式进行分离,转化为恒成立的问题进行处理,最终利用导数或作差(商)法,通过利用数列的单调性求出的最小值,最终求出实数的取值范围.
试题解析:(1)假设存在点,使得函数的图像上任意一点P关于点M对称的点Q也在函数的图像上,则函数图像的对称中心为.
,得
恒成立,所以解得
所以存在点,使得函数的图像上任意一点关于点M对称的点也在函数的图像上.
(2)由(1)得.
,则.
因为①,
所以②,
由①+②得,所以.
所以.
(3)由(2)得,所以.
因为当时,.
所以当时,不等式恒成立.
,则.
时,上单调递减;
时,上单调递增.
因为,所以
所以当时,.
,得,解得.
所以实数的取值范围是.
考点:函数的对称性、倒序相加法、导数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若对任意,使得恒成立,求实数的取值范围;
(Ⅱ)证明:对,不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数().
(1)当时,求函数的单调区间;
(2)当时,取得极值.
① 若,求函数上的最小值;
② 求证:对任意,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的定义域为(0,).
(Ⅰ)求函数上的最小值;
(Ⅱ)设函数,如果,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数在区间上存在极值点,求实数的取值范围;
(2)当时,不等式恒成立,求实数的取值范围;
(3)求证:.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设m为实数,函数f(x)=-+2x+m,x∈R
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当m≤1且x>0时,>2+2mx+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)若,讨论的单调性;
(Ⅱ)时,有极值,证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(Ⅰ)若处的切线垂直于直线,求该点的切线方程,并求此时函数的单调区间;
(Ⅱ)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

规定其中为正整数,且=1,这是排列数(是正整数,)的一种推广.
(Ⅰ) 求的值;
(Ⅱ)排列数的两个性质:①,②(其中m,n是正整数).是否都能推广到(是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
(Ⅲ)已知函数,试讨论函数的零点个数.

查看答案和解析>>

同步练习册答案