精英家教网 > 高中数学 > 题目详情
已知等差数列{an}满足a3=5,且a5-2a2=3.又数列{bn}中,b1=3且3bn-bn+1=0(n=1,2,3,…).
(I) 求数列{an},{bn}的通项公式;
(II)若ai=bj,则称ai(或bj)是{an},{bn}的公共项.
①求出数列{an},{bn}的前4个公共项;
②从数列{an}的前100项中将数列{an}与{bn}的公共项去掉后,求剩下所有项的和.
分析:(I)设等差数列{an}的公差为d,根据a3=5,且a5-2a2=3,求出基本量,从而可得数列{an}的通项公式;利用等比数列的通项公式可得{bn}的通项公式;
(II)①利用数列{an},{bn}的通项公式,可得前4个公共项;
②确定数列{an}的前100项中包含4个公共项,利用等差数列的求和公式,可得结论.
解答:解:(I)设等差数列{an}的公差为d,则
∵a3=5,且a5-2a2=3
∴a1+2d=5,-a1+2d=3
解得a1=1,d=2,
∴an=1+(n-1)×2=2n-1;
∵3bn-bn+1=0,
bn+1
bn
=3,
∴数列{bn}是以b1=3为首项,公比为3的等比数列.
∴bn=3×3n-1=3n
(II)①数列{an},{bn}的前4个公共项为3,9,27,81;
②∵a100=199,81<a100<243
∴数列{an}的前100项中包含4个公共项
S100=
100(1+199)
2
=10000
∴数列{an}的前100项中将数列{an}与{bn}的公共项去掉后,剩下所有项的和为10000-3-9-27-81=9980.
点评:本小题主要考查数列通项,考查化归、转化、方程的数学思想方法,以及运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案