精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|xa||x5|.

1)当a=2时,求证:﹣3≤f(x)≤3

2)若关于x的不等式f(x)≤x28x+20R恒成立,求实数a的取值范围.

【答案】1)证明见解析.(2

【解析】

1代入,利用绝对值不等式的性质可得,进而得证;

2)分两种情况讨论,每种情况下都把函数f(x)化为分段函数的形式,再根据题意转化为关于的不等式,每种情况解出后最后取并集即可.

1)证明:当a=2时,f(x)=|x2|﹣|x5|,

∴||x2|﹣|x5|||x2﹣(x5)|=3

∴﹣3|x2|﹣|x5|3,即﹣3f(x)3

2)解:f(x)=|xa|﹣|x5|,

①当a5时,,则f(x)max=a5,且y=x28x+20=x28x+16+4=(x4)2+44

要使f(x) x28x+20R恒成立,则只需4a5,则a9,此时5a9

②当a<5时,

需要恒成立,

综合①②可知,0a9,即实数a的取值范围为[09].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABCA1B1C1中,ABBCBB1BCDCC1的中点.

1)证明:B1C⊥平面ABD

2)若ABBCEA1C1的中点,求二面角ABDE的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两厂均生产某种零件.根据长期检测结果:甲、乙两厂生产的零件质量(单位:)均服从正态分布,在出厂检测处,直接将质量在之外的零件作为废品处理,不予出厂;其它的准予出厂,并称为正品.

1)出厂前,从甲厂生产的该种零件中抽取10件进行检查,求至少有1片是废品的概率;

2)若规定该零件的“质量误差”计算方式为:该零件的质量为,则“质量误差”.按标准,其中“优等”、“一级”、“合格”零件的“质量误差”范围分别是(正品零件中没有“质量误差”大于的零件),每件价格分别为75元、65元、50.现分别从甲、乙两厂生产的正品零件中随机抽取100件,相应的“质量误差”组成的样本数据如下表(用这个样本的频率分布估计总体分布,将频率视为概率):

质量误差

甲厂频数

10

30

30

5

10

5

10

乙厂频数

25

30

25

5

10

5

0

(ⅰ)记甲厂该种规格的2件正品零件售出的金额为(元),求的分布列及数学期望

(ⅱ)由上表可知,乙厂生产的该规格的正品零件只有“优等”、“一级”两种,求5件该规格零件售出的金额不少于360元的概率.

附:若随机变量..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场进行抽奖促销活动,抽奖箱中有大小完全相同的4个小球,分别标有A”“B”“C”“D”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出D字球,则停止取球.获奖规则如下:依次取到标有““A”“B”“C”“D字的球为一等奖;不分顺序取到标有A”“B”“C”“D字的球,为二等奖;取到的4个球中有标有A”“B”“C三个字的球为三等奖.

1)求分别获得一、二、三等奖的概率;

2)设摸球次数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sna1=1Sn=an+1.

1)求数列{an}的通项公式;

2)若,求数列{bn}的前n项和为Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知点到直线的距离为3.

1)求实数的值;

2)设是直线上的动点,在线段上,且满足,求点轨迹方程,并指出轨迹是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者.为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据.

1)请将列联表填写完整:

有接触史

无接触史

总计

有武汉旅行史

27

无武汉旅行史

18

总计

27

54

2)能否在犯错误的概率不超过0.025的前提下认为有武汉旅行史与有确诊病例接触史有关系?

附:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过椭圆C上一点Px轴的垂线,垂足为,已知分别为椭圆C的左、右焦点,AB分别是椭圆C的右顶点、上顶点,且

1)求椭圆C的方程;

2)过点的直线l交椭圆CMN两点,记直线PMPNMN的斜率分别为,问:是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天上有些恒星的亮度是会变化的,其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化.第一颗被描述的经典造父变星是在1784.

上图为一造父变星的亮度随时间的周期变化图,其中视星等的数值越小,亮度越高,则此变星亮度变化的周期、最亮时视星等,分别约是(

A.5.53.7B.5.44.4C.6.53.7D.5.54.4

查看答案和解析>>

同步练习册答案