精英家教网 > 高中数学 > 题目详情

【题目】如图,三角形所在的平面与长方形所在的平面垂直,.点边的中点,点分别在线段上,且.

(1)证明:

(2)求二面角的正切值;

(3)求直线与直线PG所成角的余弦值.

【答案】⑴见证明;⑵;⑶

【解析】

(1)由面面垂直的性质得到平面,进而得到.

2)由二面角的定义可知二面角的平面角为中求解即可.

3)将直线所成转化为直线与直线所成角,利用余弦定理求解.

(1)证明:因为,点中点,所以.

又因为平面平面,交线为,所以平面.

平面,所以.

(2)由(1)可知,.

因为四边形为长方形,所以.

又因为,所以平面.

平面,所以.

由二面角的平面角的定义,可知为二面角的一个平面角.

中,

所以

从而二面角的正切值为.

(3)连接.因为,所以.

易求得

所以直线与直线所成角等于直线与直线所成角,即

中,

所以直线与直线所成角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的图象在点处的切线方程;

(2)若函数的图象与轴有且仅有一个交点,求实数的值;

(3)在(2)的条件下,对任意的,均有成立,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,底面为直角三角形,,点是线段上一动点,则的最小值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣﹣4;坐标系与参数方程
已知动点P,Q都在曲线C: 上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.
(1)求M的轨迹的参数方程
(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(I)若,且对于,有恒成立,求的取值范围;

(II)若,解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.
(1)求C的方程;
(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】钓鱼岛事件以来,中日关系日趋紧张并不断升级.为了积极响应保钓行动,某学校举办了一场保钓知识大赛,共分两组.其中甲组得满分的有1个女生和3个男生,乙组得满分的有2个女生和4个男生.现从得满分的同学中,每组各任选1个同学,作为保钓行动代言人”.

(1)求选出的2个同学中恰有1个女生的概率;

(2)X为选出的2个同学中女生的个数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 数列{bn},{cn}满足 (n+1)bn=an+1 ,(n+2)cn= ,其中n∈N*.
(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;
(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn , 求证:数列{an}是等差数列.

查看答案和解析>>

同步练习册答案