精英家教网 > 高中数学 > 题目详情

本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

设函数是定义域为R的奇函数.

(1)求k值;

(2)(文)当时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;

(理)若f(1)<0,试判断函数单调性并求使不等式恒成立的的取值范围;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.

 

 

【答案】

解(1)∵f(x)是定义域为R的奇函数,

f(0)=0,                          …………………… 2分

∴1-(k-1)=0,∴k=2,            …………………… 4分

(2)(文)

单调递减,单调递增,故f(x)在R上单调递减。

…………………… 6分

原不等式化为:f(x2+2x)>f(4-x)

x2+2x<4-x,即x2+3x-4<0         …………………… 8分

∴不等式的解集为{x|}.   …………………………10分

(2)(理)

………………6分

单调递减,单调递增,故f(x)在R上单调递减。                                    ………………7分

不等式化为

恒成立,…………… 8分

,解得。…………………… 10分

(3)∵f(1)=,,即

……………………………………12分

g(x)=22x+2-2x-2m(2x-2x)=(2x-2x)2-2m(2x-2x)+2.

tf(x)=2x-2x

由(1)可知f(x)=2x-2x为增函数

x≥1,∴tf(1)=,

h(t)=t2-2mt+2=(tm)2+2-m2 (t≥)………………15分

m≥,当tm时,h(t)min=2-m2=-2,∴m=2………… 16分

m<,当t=时,h(t)min=-3m=-2,解得m=>,舍去……17分

综上可知m=2.                 ………………………………18分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分18分)如图,将圆分成个扇形区域,用3种不同颜色给每一个扇形区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为。求

(Ⅰ)

(Ⅱ)的关系式;

(Ⅲ)数列的通项公式,并证明

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分18分)已知数列{an}、{bn}、{cn}的通项公式满足bn=an+1-an,cn=bn+1-bn(n∈N*?),若数列{bn}是一个非零常数列,则称数列{an}是一阶等差数列;若数列{cn}是一个非零常数列,则称数列{an}是二阶等差数列?(1)试写出满足条件a=1,b1=1,cn=1(n∈N*?)的二阶等差数列{an}的前五项;(2)求满足条件(1)的二阶等差数列{an}的通项公式an;(3)若数列{an}首项a=2,且满足cn-bn+1+3an=-2n+1(n∈N*?),求数列{an}的通项公式

查看答案和解析>>

科目:高中数学 来源:2015届广东汕头达濠中学高一上期末数学试卷(解析版) 题型:解答题

(本小题满分18分)知函数的图象的一部分如下图所示。

(1)求函数的解析式;

(2

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题

(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

(文)已知数列中,

(1)求证数列不是等比数列,并求该数列的通项公式;

(2)求数列的前项和

(3)设数列的前项和为,若对任意恒成立,求的最小值.

 

 

查看答案和解析>>

同步练习册答案