精英家教网 > 高中数学 > 题目详情
11.若函数f(x)=sinωx+$\sqrt{3}$cos(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为π,则f(x)在[0,$\frac{π}{4}$]上的最大值为(  )
A.2B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

分析 利用三角恒等变换化简函数f(x),根据f(x)的最小正周期求出ω的值,由x的取值范围求出f(x)的最大值

解答 解:f(x)=sinωx+$\sqrt{3}$cos(ωx+$\frac{π}{3}$)
=sinωx+$\frac{\sqrt{3}}{2}$cosωx-$\frac{3}{2}$sinωx=$\frac{\sqrt{3}}{2}$cosωx-$\frac{1}{2}$sinωx=cos(ωx+$\frac{π}{6}$),
∵函数f(x)的最小正周期为π,
∴ω=$\frac{2π}{π}$=2,
∴f(x)=cos(2x+$\frac{π}{6}$),
∵x∈[0,$\frac{π}{4}$],
∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],
∴f(x)在[0,$\frac{π}{4}$]上的最大值为f(0)=cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$
故选:C

点评 本题考查了三角恒等变换以及三角函数在闭区间上的最值问题,是中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在△ABC中,a,b,c分别是角A,B,C的对边,且A=60°,a=7,c=5,则△ABC的面积等于(  )
A.$\frac{{15\sqrt{3}}}{4}$B.$\frac{15}{4}$C.$10\sqrt{3}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一条直线与两条异面直线中的一条平行,则它和另一条的位置关系是(  )
A.异面B.相交C.异面或平行D.相交或异面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个几何体的三视图如图,则该几何体的体积为(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,2QA=2AB=PD
(Ⅰ)证明:PQ⊥QC
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在等差数列{an}中,a1=1,a3+a5=3,若a1,a7,an成等比数列,则n=19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={-1,0,1},B={y|y=|x|},则A∩B=(  )
A.{0}B.{1}C.{0,1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x+2|+|x-4|.
(1)求函数f(x)的最小值;
(2)若{x|f(x)≤t2-t}∩{x|-3≤x≤5}≠∅.求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知φ∈(0,π),且$tan(φ+\frac{π}{4})=-\frac{1}{3}$.
(Ⅰ)求tan2φ的值;
(Ⅱ)求$\frac{sinφ+cosφ}{2cosφ-sinφ}$的值.

查看答案和解析>>

同步练习册答案