精英家教网 > 高中数学 > 题目详情
精英家教网如图,在等腰梯形ABCD中,M,N分别是AB,CD的中点,沿MN将MNCB折起至MNC1B1,使它与MNDA成直二面角.已知AB=2CD=4MN,给出下列四个等式:
(1)
AN
C1N
=0;(2)
B1C1
AN
=0;(3)
B1C1
AC1
=0;(4)
B1C1
AM
=0
.中成立的个数是(  )
A、1B、2C、3D、4
分析:由图形,根据题设中的条件对四个命题逐一判断,即可得出正确答案
解答:解:易知
C1N⊥平面AMN
D
,故(1)式成立;同理(4)式也成立;
假设(2)成立,即有
B1C1
AN
又由(1)式可得,AN⊥平面B1MNC1,这与AM⊥平面平面B1MNC1矛盾,则(2)式不成立,
对于(3),连接MC1,由B1M=2C1N=4MN,得MC1
B1C1
B1C1
AM
得出
B1C1
平面 A MC1
B1C1
AC 1
,(3)成立,
故选C
点评:本题考查向量的数量积判断向量的共线与垂直,是向量在立体几何中的重要运用方式,求解本题要注意数形结合,灵活选用判定方法,以达到简化解题的目的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在等腰梯形ABCD中,AB∥DC,AB=4,CD=2,等腰梯形的高为3,O为AB中点,PO⊥平面ABCD,垂足为O,PO=2,EA∥PO.
(1)求证:BD⊥平面EAC;
(2)求二面角E-AC-P的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在等腰梯形CDEF中,CB、DA是梯形的高,AE=BF=2,AB=2
2
,现将梯形沿CB、DA折起,使EF∥AB,且EF=2AB,得一简单组合体ABCDEF如图所示,已知M、N、P分别为AF,BD,EF的中点.
(1)求证:MN∥平面BCF;
(2)求证:AP⊥平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1;几何证明选讲.
如图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.
求证:DE•DC=AE•BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)如图,在等腰梯形ABCD中,CD=2,AB=4,AD=BC=
2
,E、F分别为CD、AB中点,沿EF将梯形AFED折起,使得∠AFB=60°,点G为FB的中点.
(1)求证:AG⊥平面BCEF
(2)求DG的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在等腰梯形ABCD中,上底CD=3,下底AB=4,E、F分别为AB、CD中点,分别沿DE、CE把△ADE与△BCE折起,使A、B重合于点P.

(1)求证:PE⊥CD;
(2)若点P在面CDE的射影恰好是点F,求EF的长.

查看答案和解析>>

同步练习册答案