精英家教网 > 高中数学 > 题目详情

【题目】如图在三棱柱中,边的中点..

1)证明:平面

2)若中点且,求三棱锥的体积.

【答案】1)证明见解析(2

【解析】

由题意知,,利用线面平行的判定定理即可证明;

由已知条件可得,由线面垂直的判定知,平面,由线面垂直的性质知,,由知,,进而证明平面,由面面垂直的判定定理知,平面平面,且交线为,过点作,则平面,利用等体积法:求解即可.

1)证明:因为三棱柱中,侧面为平行四边形,

,可知的中点,又因为边的中点,

所以

因为平面平面

所以平面;

2)作图如下:

因为,为公共边,

所以,所以

因为中点,,

由线面垂直的判定知,平面

所以 ,

又因为中点,中点,连

所以,, ,

所以平面

所以平面平面,且交线为

点作,则平面

为点到平面的距离,

因为

所以三角形为等边三角形,即

,所以满足,

,,

,,,

所以,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业响应省政府号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.如图是设备改造前的样本的频率分布直方图,表是设备改造后的样本的频数分布表.

表:设备改造后样本的频数分布表

质量指标值

频数

(1)完成下面的列联表,并判断是否有的把握认为该企业生产的这种产品的质量指标值与设备改造有关;

设备改造前

设备改造后

合计

合格品

不合格品

合计

(2)根据频率分布直方图和表 提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;

(3)企业将不合格品全部销毁后,根据客户需求对合格品进行登记细分,质量指标值落在内的定为一等品,每件售价元;质量指标值落在内的定为二等品,每件售价元;其它的合格品定为三等品,每件售价.根据表的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为(单位:元),求的分布列和数学期望.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线为参数,),曲线为参数).若曲线相切.

1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的极坐标方程;

2)若点为曲线上两动点,且满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面是平行四边形,平面中点,点在棱上移动.

(1)若,求证:

(2)若,当点中点时,求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数.

1)求单调区间;

2)当时,证明:若是函数的两个零点,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线与抛物线相交于两点,且,若轴距离的乘积为

1)求的方程;

2)设点为抛物线的焦点,当面积最小时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为(为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为

1)求直线的普通方程和圆的直角坐标方程;

2)设圆与直线交于两点,若点的坐标为,求

查看答案和解析>>

同步练习册答案