精英家教网 > 高中数学 > 题目详情

【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了名机动车司机,得到以下统计:在名男性司机中,开车时使用手机的有人,开车时不使用手机的有人;在名女性司机中,开车时使用手机的有人,开车时不使用手机的有人.

(1)完成下面的列联表,并判断是否有的把握认为开车时使用手机与司机的性别有关;

开车时使用手机

开车时不使用手机

合计

男性司机人数

女性司机人数

合计

(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为,若每次抽检的结果都相互独立,求的分布列和数学期望

参考公式与数据:

参考数据:

参考公式

span>,其中.

【答案】(1)列联表见解析,有;(2)分布列见解析,.

【解析】

1)根据已知数据即可得到列联表;计算出,对比临界值表可得到结果;(2)由样本估计总体思想,可得到随机抽检辆,司机为男性且开车使用手机的概率为,可知,由二项分布概率公式可计算得到每个取值所对应的概率,从而得到分布列;由二项分布数学期望计算公式可得.

(1)由已知数据可得列联表如下:

开车时使用手机

开车时不使用手机

合计

男性司机人数

女性司机人数

合计

的把握认为开车时使用手机与司机的性别有关

(2)随机抽检辆,司机为男性且开车时使用手机的概率

有题意可知:可取值是,且

的分布列为:

数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平行四边形中,,过点作的垂线,交的延长线于点.连结,交于点,如图1,将沿折起,使得点到达点的位置,如图2.

(1)证明:平面平面

(2)若的中点,的中点,且平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是由直线引出的三个不重合的半平面,其中二面角大小为60°在二面角内绕直线旋转,圆内,且圆内的射影分别为椭圆.记椭圆的离心率分别为,则的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若曲线在它们的交点处有相同的切线,求实数a,b的值;

(2)当时,若函数在区间内恰有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的中心在坐标原点,焦点轴上,过坐标原点的直线两点,面积的最大值为

1)求椭圆的方程;

2是椭圆上与不重合的一点,证明:直线的斜率之积为定值;

3)当点在第一象限时,轴,垂足为,连接并延长交于点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线x22py(p>0)的焦点,斜率为的直线交抛物线于A(x1y1)B(x2y2)(x1<x2)两点,且|AB|9.

(1)求该抛物线的方程;

(2)O为坐标原点,C为抛物线上一点,若,λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过两点A04),B46),且圆心在直线x2y2=0上.

1)求圆C的方程;

2)若直线l过原点且被圆C截得的弦长为6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.

(1)证明:平面平面

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,左右顶点分别是,长轴长为是以原点为圆心,为半径的圆的任一条直径,四边形的面积最大值为.

(1)求椭圆的方程;

(2)不经过原点的直线与椭圆交于两点,

①若直线的斜率分别为,且,求证:直线过定点,并求出该定点的坐标;

②若直线的斜率是直线斜率的等比中项,求面积的取值范围.

查看答案和解析>>

同步练习册答案