【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了名机动车司机,得到以下统计:在名男性司机中,开车时使用手机的有人,开车时不使用手机的有人;在名女性司机中,开车时使用手机的有人,开车时不使用手机的有人.
(1)完成下面的列联表,并判断是否有的把握认为开车时使用手机与司机的性别有关;
开车时使用手机 | 开车时不使用手机 | 合计 | |
男性司机人数 | |||
女性司机人数 | |||
合计 |
(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为,若每次抽检的结果都相互独立,求的分布列和数学期望.
参考公式与数据:
参考数据:
参考公式
span>,其中.
科目:高中数学 来源: 题型:
【题目】在平行四边形中,,,过点作的垂线,交的延长线于点,.连结,交于点,如图1,将沿折起,使得点到达点的位置,如图2.
(1)证明:平面平面;
(2)若为的中点,为的中点,且平面平面,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,,,是由直线引出的三个不重合的半平面,其中二面角大小为60°,在二面角内绕直线旋转,圆在内,且圆在,内的射影分别为椭圆,.记椭圆,的离心率分别为,,则的取值范围是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的中心在坐标原点,焦点在轴上,过坐标原点的直线交于两点,,面积的最大值为
(1)求椭圆的方程;
(2)是椭圆上与不重合的一点,证明:直线的斜率之积为定值;
(3)当点在第一象限时,轴,垂足为,连接并延长交于点,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线x2=2py(p>0)的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.
(1)求该抛物线的方程;
(2)O为坐标原点,C为抛物线上一点,若,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C过两点A(0,4),B(4,6),且圆心在直线x﹣2y﹣2=0上.
(1)求圆C的方程;
(2)若直线l过原点且被圆C截得的弦长为6,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左右焦点分别为、,左右顶点分别是、,长轴长为,是以原点为圆心,为半径的圆的任一条直径,四边形的面积最大值为.
(1)求椭圆的方程;
(2)不经过原点的直线:与椭圆交于、两点,
①若直线与的斜率分别为,,且,求证:直线过定点,并求出该定点的坐标;
②若直线的斜率是直线、斜率的等比中项,求面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com