精英家教网 > 高中数学 > 题目详情

【题目】已知小李每次打靶命中靶心的概率都为40%,现采用随机模拟的方法估计小李三次打靶恰有两次命中靶心的概率.先由计算器产生09之间取整数值的随机数,指定0,1,2,3表示命中靶心,4,5,6,7,8,9表示未命中靶心,再以每三个随机数为一组,代表三次打靶的结果,经随机模拟产生了如下20组随机数:

 321 421 191 925 271 932 800 478

 589 663 531 297 396 021 546 388

 230 113 507 965

据此估计,小李三次打靶恰有两次命中的概率为(  )

A. 0.25 B. 0.30

C. 0.35 D. 0.40

【答案】B

【解析】利用古典概型的概率计算公式,即可求出小李三次打靶恰有两次命中靶心的概率.

由题意知,在20组随机数中表示三次打靶恰有两次命中靶心的有421,191,271,932,800,531,共6组随机数,所以所求概率为=0.30,故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种产品的质量用其质量指标值来衡量)质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为配方和配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:

配方的频数分布表:

指标值分组

[90,94

[94,98

[98,102

[102,106

[106,110]

频数

8

20

42

22

8

配方的频数分布表:

指标值分组

[90,94

[94,98

[98,102

[102,106]

[106,110]

频数

4

12

42

32

10

1)分别估计用配方、配方生产的产品的优质品率;

2)已知用配方生产的一件产品的利润(单位:元)与其质量指标值的关系为,估计用配方生产的一件产品的利润大于的概率,并求用配方生产的上述件产品的平均利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒子中仅有4个白球和5个黑球,从中任意取出一个球.

1取出的球是黄球是什么事件?它的概率是多少?

2取出的球是白球是什么事件?它的概率是多少?

3取出的球是白球或黑球是什么事件?它的概率是多少?

4)设计一个用计算器或计算机模拟上面取球的试验,并模拟100次,估计取出的球是白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

1时,求函数上的最大值和最小值;

2时,是否存在实数,当是自然对数底时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆C过定点F20),且与直线x=-2相切,圆心C的轨迹为E

1)求圆心C的轨迹E的方程;

2)若直线lEPQ两点,且线段PQ的中心点坐标(11),求|PQ|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由0、1、2、3、4五个数字任取三个数字,组成能被3整除的没有重复数字的三位数,共有( )个.

A. 14B. 16C. 18D. 20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为一个摩天轮示意图。该摩天轮圆半径为4.8m,圆上最低点与地面距离为0.8m60s转动一周.图中OA与地面垂直。以O为始边,逆时针转动0角到OBB点与地面的距离为hm.

1)求h的函数解析式;

(2)设从OA开始转动,经过ts到达OB,求ht的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数在区间上是减函数,且满足.令,则的大小关系为( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案