精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若g(x)=f(x)-1在区间[m,n](m<n)上的值域也为[m,n],求m和n的值.
分析:(Ⅰ)根据函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0,可设f(x)=a(x+1)2=ax2+2ax+a,与函数f(x)=ax2+bx+1比较,即可得出f(x)的解析式;
(Ⅱ)先确定g(x)=(x+1)2-1的值域,根据g(x)=f(x)-1在区间[m,n](m<n)上的值域也为[m,n],确定m≥-1,从而可得g(x)=f(x)-1在区间[m,n]上单调增,由此可求m和n的值.
解答:解:(Ⅰ)由题意,函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0.
∴可设f(x)=a(x+1)2=ax2+2ax+a
与函数f(x)=ax2+bx+1比较可得a=1
∴f(x)的解析式为f(x)=(x+1)2
(Ⅱ)g(x)=(x+1)2-1≥-1
∵g(x)=f(x)-1在区间[m,n](m<n)上的值域也为[m,n],
∴m≥-1
∴g(x)=f(x)-1在区间[m,n]上单调增
(m+1)2-1=m
(n+1)2-1=n

∴m,n是方程(x+1)2-1=x的两根
即m,n是方程x2+x=0的两根
∵m<n
∴m=-1,n=0.
点评:本题重点考查函数的解析式,考查函数的单调性与值域,(2)问先确定函数的值域是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案