精英家教网 > 高中数学 > 题目详情
18.为检测空气质量,某市环保局随机抽取了甲、乙两地2016年20天PM2.5日平均浓度(单位:微克/立方米)监测数据,得到甲地PM2.5日平均浓度频率分布直方图和乙地PM2.5日平均浓度的频数分布表.

乙地20天PM2.5日平均浓度频数分布表
PM2.5日平均浓度(微克/立方米)[0,20](20,40](40,60](60,80](80,100]
频数(天)23465
(1)根据乙地20天PM2.5日平均浓度的频率分布表,作出作出相应的频率分组直方图,并通过两个频率分布直方图比较两地PM2.5日平均浓度的平均值及分散程度(不要求计算出具体值,给出结论即可);
(2)通过调查,该市市民对空气质量的满意度从高到低分为三个等级:
满意度等级非常满意满意不满意
PM2.5日平均浓度(微克/立方米)不超过20大于20不超过60超过60
从乙地这20天PM2.5日平均浓度不超过40的天数中随机抽取两天,求这两天中至少有一天居民对空气质量满意度为“非常满意”的概率.

分析 (1)根据频率分布直方图的画法画图即可,由图比较即可,
(2)设可设乙地这20天中PM2.5日平均浓度不超过40的5天分别为a,b,c,d,e,其中a,b表示居民对空气质量满意度为“非常满意”的两天,列举出从5天任取2天的所有情况和满足至少有一天居民对空气质量满意度为“非常满意“的情况数,代入古典概型概率计算公式,可得答案

解答 解:(1)如图所示:由图可知:甲地PM2.5日平均浓度的平均值低于乙地PM2.5日平均浓度的平均值,而且甲地的数据比较集中,乙地的数据比较分散,
(2)由题意,可设乙地这20天中PM2.5日平均浓度不超过40的5天分别为a,b,c,d,e,其中a,b表示居民对空气质量满意度为“非常满意”的两天,则从5天中任取两天共有以下10种情况:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),
(c,e),(d,e),其中至少有一天为“非常满意”有以下7种,(a,b),(a,c),
(a,d),(a,e),(b,c),(b,d),(b,e),
所以所求概率P=$\frac{7}{10}$

点评 本题考查概率的求法和频率分布直方图的画法,解题时要认真审题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.某时段内共有100辆汽车经过某一雷达地区,汽车时速的频率分布直方图如图所示,则时速不低于60km/h的汽车数量为(  )
A.38B.28C.10D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=|x-3|+|x+1|,g(x)=|x+1|-|x+a|-a.
(1)解不等式f(x)≥6;
(2)若不等式f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=xlnx+ax,函数f(x)的图象在点x=1处的切线与直线x+2y-1=0垂直.
(1)求a的值和f(x)的单调区间;
(2)求证:ex>f′(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“x>-2”是“x2<4”(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在圆中直径所对的圆周角是直角,有同学类比圆研究椭圆,把经过椭圆中心的弦叫做椭圆的直径.已知椭圆
C:$\frac{{x}^{2}}{3}$+y2=1,AB是椭圆C的直径.
(I )求椭圆C的离心率;
(Ⅱ)该同学用几何画板在椭圆C上取了几个点.通过测量发现毎一个点与A,B连线的斜率之积不变.耶么对于椭圆上任意一点M(M不与A,B重合),直线MA,MB的斜率之积是否为定值.若是.写出定值并证明你的结论;若不是请说明理由.
(III)O是坐标原点,M是椭圆上的一点且在第一象限.M关于原点的对称点为M′,E是x轴一点.△MOE是等等腰三角形.MO=ME,直线M′E与椭圆的另一个交点为N,求证:∠M′MN是直角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D(m<n),同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n]则称函数f(x)是区间[m,n]上的“保值函数”.
(1)求证:函数g(x)=x2-2x不是定义域[0,1]上的“保值函数”;
(2)已知f(x)=2+$\frac{1}{a}$-$\frac{1}{{a}^{2}x}$(a∈R,a≠0)是区间[m,n]上的“保值函数”,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.tan(-$\frac{55}{6}$π)的值是-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积是(  )
A.4+6πB.4+12πC.8+6πD.8+12π

查看答案和解析>>

同步练习册答案