精英家教网 > 高中数学 > 题目详情

【题目】在三棱锥中,,三角形为等边三角形,二面角的余弦值为,当三棱锥的体积最大值为时,三棱锥的外接球的表面积为______.

【答案】

【解析】

根据题意作出图象,利用三垂线定理找出二面角的平面角,再设出的长,

即可求出三棱锥的高,然后利用利用基本不等式即可确定三棱锥的体积最大值,从而得出各棱的长度,最后根据球的几何性质,利用球心距,半径,底面半径之间的关系即可求出三棱锥的外接球的表面积.

如图所示:

过点,垂足为,过点于点,连接.

为二面角的平面角的补角,即有.

∵易证,,而三角形为等边三角形, 的中点.

, .

.

故三棱锥的体积为

当且仅当时,,即.

三点共线.

设三棱锥的外接球的球心为,半径为.

过点,∴四边形为矩形.

,,,

,,解得.

三棱锥的外接球的表面积为.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图两个同心球,球心均为点,其中大球与小球的表面积之比为3:1,线段是夹在两个球体之间的内弦,其中两点在小球上,两点在大球上,两内弦均不穿过小球内部.当四面体的体积达到最大值时,此时异面直线的夹角为,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面ABCD,底面ABCD是边长为2的菱形,点EF分别为棱DCBC的中点,点G是棱SC靠近点C的四等分点.

求证:(1)直线平面EFG

2)直线平面SDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的焦点为.

若点为抛物线上异于原点的任一点,过点作抛物线的切线交轴于点,证明:.

是抛物线上两点,线段的垂直平分线交轴于点 (不与轴平行),且.过轴上一点作直线轴,且被以为直径的圆截得的弦长为定值,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:

1)估计该批次产品长度误差绝对值的数学期望;

2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数满足的虚部为2

1)求复数

2)设在复平面上对应点分别为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的两顶点分别为为双曲线的一个焦点,为虚轴的一个端点,若在线段上(不含端点)存在两点,使得,则双曲线的渐近线斜率的平方的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着时代的发展和社会的进步,农村淘宝发展十分迅速,促进农产品进城消费品下乡.农产品进城很好地解决了农产品与市场的对接问题,使农民收入逐步提高,生活水平得到改善,农村从事网店经营的人收入逐步提高.西凤脐橙是四川省南充市的特产,因果实呈椭圆形、色泽橙红、果面光滑、无核、果肉脆嫩化渣、汁多味浓,深受人们的喜爱.为此小王开网店销售西凤脐橙,每月月初购进西凤脐橙,每售出1吨西凤脐橙获利润800元,未售出的西凤脐橙,每1吨亏损500.经市场调研,根据以往的销售统计,得到一个月内西凤脐橙市场的需求量的频率分布直方图如图所示.小王为下一个月购进了100吨西凤脐橙,以x(单位:吨)表示下一个月内市场的需求量,y(单位:元)表示下一个月内经销西凤脐橙的销售利润.

1)将y表示为x的函数;

2)根据频率分布直方图估计小王的网店下一个月销售利润y不少于67000元的概率;

3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率,(例如:若需求量,则取,且的概率等于需求量落入的频率),求小王的网店下一个月销售利润y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为为椭圆上一动点(异于左右顶点),面积的最大值为

(1)求椭圆的方程;

(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案