精英家教网 > 高中数学 > 题目详情

已知函数
(1)用定义证明上单调递增;
(2)若上的奇函数,求的值;
(3)若的值域为D,且,求的取值范围.

(1)设


 即
上单调递增 ;
(2);(3).

解析试题分析:(1)在定义域内任取,证明,即,所以上单调递增;(2)因为,上的奇函数,所以,即,代入表达式即可得;(3)可求得的值域,由可得不等式,所以.
试题解析:(1)设                          1分
      3分

 即                            5分
上单调递增                                            6分
(2)上的奇函数  8分

                                                         11分
(用必须检验,不检验扣2分)
(3)由
                             14分


的取值范围是                                        16分
考点:1、函数单调性的证明;2、奇函数的定义;(3)函数的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数为奇函数.
(1)求常数的值;
(2)判断函数的单调性,并说明理由;
(3)函数的图象由函数的图象先向右平移2个单位,再向上平移2个单位得到,写出的一个对称中心,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.
(1) 如果实数满足,函数是否具有奇偶性? 如果有,求出相应的值;如果没有,说明原因;
(2) 如果,讨论函数的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,判断的奇偶性,并说明理由;
(2)当时,若,求的值;
(3)若,且对任何不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为
(1)求
(2)若,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的定义域;
(Ⅱ)求的值,作出函数的图象并指出函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设集合.
⑴求的值;
⑵判断函数的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,当时,对应值的集合为.
(1)求的值;(2)若,求该函数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)若的图像关于对称,且,求的解析式;
(2)对于(1)中的,讨论的图像的交点个数.

查看答案和解析>>

同步练习册答案