精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x﹣alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间和极值.

【答案】
(1)解:函数f(x)的定义域为(0,+∞),f′(x)=1﹣

当a=2时,f(x)=x﹣2lnx,f′(x)=1﹣ (x>0),

因而f(1)=1,f′(1)=﹣1,

所以曲线y=f(x)在点A(1,f(1))处的切线方程为y﹣1=﹣(x﹣1),

即x+y﹣2=0


(2)解:由f′(x)=1﹣ = ,x>0知:

①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;

②当a>0时,由f′(x)=0,解得x=a.

又当x∈(0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0.

从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a﹣alna,无极大值.

综上,当a≤0时,函数f(x)无极值;

当a>0时,函数f(x)在x=a处取得极小值a﹣alna,无极大值


【解析】(1)把a=2代入原函数解析式中,求出函数在x=1时的导数值,直接利用直线方程的点斜式写直线方程;(2)求出函数的导函数,由导函数可知,当a≤0时,f′(x)>0,函数在定义域(0,+∝)上单调递增,函数无极值,当a>0时,求出导函数的零点,由导函数的零点对定义域分段,利用原函数的单调性得到函数的极值.
【考点精析】利用函数的极值与导数对题目进行判断即可得到答案,需要熟知求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为

1)分别求曲线的极坐标方程和曲线的直角坐标方程;

2)设直线交曲线 两点,交曲线 两点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为C的圆过点A(0,﹣6)和B(1,﹣5),且圆心在直线l:x﹣y+1=0上.
(1)求圆心为C的圆的标准方程;
(2)过点M(2,8)作圆的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在(0,+∞)上的减函数,满足f(x)+f(y)=f(xy).
(1)求证:
(2)若f(4)=﹣4,解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:2x+y﹣1=0与圆C:x2+y2=1相交于A,B两点.
(1)求△AOB的面积(O为坐标原点);
(2)设直线ax+by=1与圆C:x2+y2=1相交于M,N两点(其中a,b是实数),若OM⊥ON,试求点P(a,b)与点Q(0,1)距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论中恒成立的个数为( )
(1)EP⊥AC;
(2)EP∥BD;
(3)EP∥面SBD;
(4)EP⊥面SAC.

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA,则cosA+sinC的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步雾霾天气现象增多,大气污染危害加重,大气污染可引起心悸,呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

5

10

合计

50

已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.

(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;

(2)已知在患心肺疾病的10位女性中,有3位又患胃病,现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求的分布列、数学期望及方差,下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数, 是自然对数的底数).

(1)当时,求曲线在点处的切线方程;

(2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案