精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的一个顶点为,离心率,直线交椭圆于两点.

1)若直线的方程为,求弦的长;

2)如果的重心恰好为椭圆的右焦点,求直线方程的一般式.

【答案】(1);(2)

【解析】

1)由已知中椭圆的一个顶点为,离心率,根据可求出椭圆的标准方程,进而求直线的方程及弦长公式,得到弦的长;

2)设线段的中点为,结合(1)中结论,及的重心恰好为椭圆的右焦点,由重心坐标公式,可得点坐标,由中点公式及也在椭圆上,求出的斜率,可得直线方程.

解:(1)由已知椭圆的一个顶点为

离心率

,解得

椭圆方程为

联立,

消去

所求弦长

2)椭圆右焦点的坐标为

设线段的中点为

由三角形重心的性质知,又

故得

求得的坐标为

,则

以上两式相减得

故直线的方程为,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)时,求证函数上是增函数.

(2)若函数上有两个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代十进制的算筹计数法,在世界数学史上是一个伟大的创造. 算筹实际上是一根根同样长短的小木棍,用算筹表示数1~9的方法如图:例如:163可表示为“”,27可表示为“”.现有6根算筹,用来表示不能被10整除的两位数,算筹必须用完,则这样的两位数的个数为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰直角三角形ABC中,∠CAB=90°,AB=2,以AB为直径在△ABC外作半圆O,P为半圆弧AB上的动点,点Q在斜边BC上,若,则的最小值为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是各项都不为0的无穷数列,对任意的n≥3,n 恒成立.

(1)如果成等差数列,求实数的值;

(2)已知=1.①求证:数列是等差数列;②已知数列中,.数列是公比为q的等比数列,满足(i).求证:q是整数,且数列中的任意一项都是数列中的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形沿对角线折成直二面角,下列结论:①所成的角为:②所成的角为:③与面所成角的正弦值为:④二面角的平面角正切值是:其中正确结论的个数为(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形所在平面,M的中点,二面角的大小为.

1)设l是平面与平面的交线,证明

2)在棱是否存在一点N,使的二面角.若不存在,说明理由:若存在,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:若,则

(2)当时,试讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.

(Ⅰ)求证:D1EA1D;

)在棱AB上是否存在点E使得AD1与平面D1EC成的角为?若存在,求出AE的长,若不存在,说明理由.

查看答案和解析>>

同步练习册答案