精英家教网 > 高中数学 > 题目详情

【题目】已知各项都是正数的数列{an}的前n项和为Sn , Sn=an2+ an , n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:b1=1,bn﹣bn1=2an(n≥2),求数列{ }的前n项和Tn
(3)若Tn≤λ(n+4)对任意n∈N*恒成立,求λ的取值范围.

【答案】
(1)解:∵Sn=an2+ an

∴Sn+1=an+12+ an+1

两式相减得:an+1= + (an+1﹣an),

∴(an+1+an)(an+1﹣an )=0,

∵数列{an}的各项都是正数,

∴an+1﹣an=

又∵a1= + a1

∴a1=

∴数列{an}是以 为首项、 为公差的等差数列,

∴an= +(n﹣1) =


(2)解:∵an=

∴bn﹣bn1=2an=2 =n,

∴b2﹣b1=2,

b3﹣b2=3,

bn﹣bn1=n,

累加得:bn﹣b1=

又∵b1=1,

∴bn=b1+ =1+ =

= =2( ),


(3)解:∵Tn=

∴Tn≤λ(n+4),

∴λ≥ = =

∵n+ ≥2 =4当且仅当n=2时取等号,

∴当n=2时 有最大值


【解析】(1)通过Sn=an2+ an、Sn+1=an+12+ an+1 , 作差、分析可得an+1﹣an= ,进而可得结论;(2)通过an= ,可得bn﹣bn1=n,累加即得:bn﹣b1= ,从而可得bn= ,裂项可得 =2( ),并项相加即得结论;(3)通过Tn= 、Tn≤λ(n+4),整理可得λ≥ ,利用基本不等式即得结论.
【考点精析】认真审题,首先需要了解数列的通项公式(如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中是真命题的是( )

①“若x2+y20,则x,y不全为零的否命题 ②“正多边形都相似的逆命题

③“若m>0,则x2+x-m=0有实根的逆否命题④“若x-是有理数,则x是

无理数的逆否命题

A、①②③④ B、①③④ C、②③④ D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,椭圆C:的左、右焦点分别为F1,F2,右顶点为A,上顶点为B,|OB|,|OF2|,|AB|成等比数列,椭圆C上的点到焦点F2的最短距离为

(1)求椭圆C的标准方程;

(2)设T为直线x=-3上任意一点,过F1的直线交椭圆C于点P,Q,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用分别表示乌龟和兔子所行的路程,为时间,则与故事情节相吻合的是(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ ax2﹣bx
(1)当a=b= 时,求函数f(x)的单调区间;
(2)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=.

(1)判断函数f(x)的奇偶性;

(2)判断并用定义证明函数f(x)在其定义域上的单调性.

(3)若对任意的t1,不等式f()+f()<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= 若f(x)恰有2个零点,则实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中,若仅存在两个的整数使得,则实数的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在R上的函数,对R都有,且当0时,<0,=1.

(1)求的值

(2)求证:为奇函数;

(3)求在[-2,4]上的最值.

查看答案和解析>>

同步练习册答案