【题目】如图,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,
(1)求椭圆的方程.
(2)当时,求的面积.
科目:高中数学 来源: 题型:
【题目】如图1,在等腰直角三角形中,,,、分别是,上的点,,为的中点,将沿折起,得到如图2所示的四棱锥,其中.
(1)证明:平面;
(2)求二面角的平面角的余弦值;
(3)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在R上的偶函数,对任意都有,当,且时,,给出如下命题:
①;
②直线是函数的图象的一条对称轴;
③函数在上为增函数;
④函数在上有四个零点.
其中所有正确命题的序号为( )
A. ①② B. ②④ C. ①②③ D. ①②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应国家提出的“大众创业,万众创新”的号召,小李同学大学毕业后,决定利用所学专业进行自主创业。经过市场调查,生产某小型电子产品需投入年固定成本为5万元,每年生产万件,需另投入流动成本为万元,且,每件产品售价为10元。经市场分析,生产的产品当年能全部售完。
(1)写出年利润(万元)关于年产量(万件)的函数解析式;
(注:年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,小李在这一产品的生产中所获利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:
步数/步 | 10000以上 | ||||
男生人数/人 | 1 | 2 | 7 | 15 | 5 |
女性人数/人 | 0 | 3 | 7 | 9 | 1 |
规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.
(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”;
积极性 | 懈怠性 | 总计 | |
男 | |||
女 | |||
总计 |
附:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com