精英家教网 > 高中数学 > 题目详情

【题目】已知直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的极坐标方程为.

(1)求直线的普通方程和圆的直角坐标方程;

(2)若点是直线上的动点,过作直线与圆相切,切点分别为,若使四边形的面积最小,求此时点的坐标.

【答案】(1)(2)点的坐标为.

【解析】分析:(1)利用代入法消去参数可得直线的普通方程将圆的极坐标方程,利用两角差的余弦公式展开,两边同乘根据互化公式可得圆的直角坐标方程;(2)若使四边形的面积最小,则的面积要最小,要使的面积要最小,只需最小即可,若最小,则最小,当最小时,进而可得结果.

详解(1)直线的参数方程为为参数),

消去参数得直线的普通方程为.

两边同乘得,

∴圆的直角坐标方程为.

(2)依题意,若使四边形的面积最小,则的面积要最小,

,其中等于圆的半径

∴要使的面积要最小,只需最小即可,

∴若最小,则最小,

又点为圆心,点是直线上动点,∴当最小时,

,解得

∴当四边形的面积最小时,点的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某小区抽取100户居民进行月用电量调查,发现其用电量都在50度至350度之间,频率分布直方图如图所示.

(1)根据直方图求x的值,并估计该小区100户居民的月均用电量(同一组中的数据用该组区间的中点值作代表);
(2)从该小区已抽取的100户居民中,随机抽取月用电量超过250度的3户,参加节约用电知识普及讲座,其中恰有ξ户月用电量超过300度,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据某市供电公司数据,20191月份市新能源汽车充电量约270万度,同比2018年增长,为了增强新能源汽车的推广运用,政府加大了充电桩等基础设施的投入.现为了了解该城市充电桩等基础设施的使用情况,随机选取了200个驾驶新能源汽车的司机进行问卷调查,根据其满意度评分值(百分制)按照,…,分成5组,制成如图所示的频率分布直方图.

1)求图中的值并估计样本数据的中位数;

2)已知满意度评分值在内的男女司机人数比为,从中随机抽取2人进行座谈,求2人均为女司机的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(0,+∞)上的连续函数y=f(x)满足:xf′(x)﹣f(x)=xex且f(1)=﹣3,f(2)=0.则函数y=f(x)(
A.有极小值,无极大值
B.有极大值,无极小值
C.既有极小值又有极大值
D.既无极小值又无极大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}前n项和为Sn , a1=a2=2,且满足Sn+Sn+1+Sn+2=3n2+6n+5,则S47等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是正三角形,EACD都垂直于平面ABC,且FBE的中点,

求证:(1平面ABC

2平面EDB.

3)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣4:极坐标与参数方程
极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为 ,曲线C2的极坐标方程为ρsinθ=a(a>0),射线 与曲线C1分别交异于极点O的四点A,B,C,D.
(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和C2化成直角坐标方程;
(Ⅱ)求|OA||OC|+|OB||OD|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂生产线上随机抽取16件零件,测量其内径数据从小到大依次排列如下(单位:):1.12,1.15,1.21,1.23,1.25,1.25,1.26,1.30,1.30,1.32,1.34,1.35,1.37,1.38,1.41,1.42,据此可估计该生产线上大约有25%的零件内径小于等于_____,大约有30%的零件内径大于_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)的左、右焦点分别为F1 , F2 , 过F1且与x轴垂直的直线交椭圆于A、B两点,直线AF2与椭圆的另一个交点为C,若△ABF2的面积是△BCF2的面积的2倍,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案