精英家教网 > 高中数学 > 题目详情
2.如果0<p<15,那么代数式|x-p|+|x-15|+|x-p-15|在p≤x≤15的最小值是(  )
A.30B.0
C.15D.一个与p 有关的代数式

分析 根据x的范围化简|x-p|+|x-15|+|x-p-15|为30-x,再结合x的范围,求得它的最小值.

解答 解:∵p≤x≤15,∴x-p≥0,x-15≤0,x-p-15≤0,
∴|x-p|+|x-15|+|x-p-15|=x-p+15-x+p+15-x=30-x,
故当x=15时,|x-p|+|x-15|+|x-p-15|的最小值为30-15=15,
故选:A.

点评 本题主要考查绝对值不等式的解法,求函数的最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-(a2-2a-1)x-a-2在[1,+∞)上是增函数.
(1)求实数a的取值范围;
(2)试比较f(1)与2f(0)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=ax2011-bx2009+cx2007-2,且f(-5)=m,则f(5)的值为-4-m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设a>0且a≠1,命题p:函数f(x)=loga(1+x)为增函数,命题Q:不等式x2+ax+2<0有解,若P∧Q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知p:函数f(x)=$\frac{x-2}{{e}^{x}}$在(m,2m)上是单调函数;q:“x2-3x≤0”是“x2-2mx-3m2≤0”的充分不必要条件,若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=($\frac{1}{2}$)|x-1|的单调减区间是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的解析式
(1)(请用两种方法)若$f(\sqrt{x}+1)=x+2\sqrt{x}$,求f(x);
(2)已知f(x)是一次函数,且f[f(x)]=4x+3,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$({{x^2}+a}){({x-\frac{1}{x}})^6}$(a∈R)的展开式中常数项为5,则该展开式中x2的系数为(  )
A.$-\frac{25}{2}$B.-5C.$\frac{25}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)在实数集R上具有下列性质:
①f(x+2)=-f(x);
②f(x+1)是偶函数;
③当x1≠x2∈[1,3]时,(f(x2)-f(x1))(x2-x1)<0.
则f(2011),f(2012),f(2013)的大小关系为(  )
A.f(2011)>f(2012)>f(2013)B.f(2012)>f(2011)>f(2013)
C.f(2013)>f(2011)>f(2012)D.f(2013)>f(2012)>f(2011)

查看答案和解析>>

同步练习册答案